Cargando…
Pathogenic Mutation of TDP-43 Impairs RNA Processing in a Cell Type-Specific Manner: Implications for the Pathogenesis of ALS/FTLD
Transactivating response element DNA-binding protein of 43 kDa (TDP-43), which is encoded by the TARDBP gene, is an RNA-binding protein with fundamental RNA processing activities, and its loss-of-function (LOF) has a central role in the pathogenesis of amyotrophic lateral sclerosis (ALS) and frontot...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society for Neuroscience
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9186108/ https://www.ncbi.nlm.nih.gov/pubmed/35641224 http://dx.doi.org/10.1523/ENEURO.0061-22.2022 |
Sumario: | Transactivating response element DNA-binding protein of 43 kDa (TDP-43), which is encoded by the TARDBP gene, is an RNA-binding protein with fundamental RNA processing activities, and its loss-of-function (LOF) has a central role in the pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). TARDBP mutations are postulated to inactivate TDP-43 functions, leading to impaired RNA processing. However, it has not been fully examined how mutant TDP-43 affects global RNA regulation, especially in human cell models. Here, we examined global RNA processing in forebrain cortical neurons derived from human induced pluripotent stem cells (iPSCs) with a pathogenic TARDBP mutation encoding the TDP-43(K263E) protein. In neurons expressing mutant TDP-43, we detected disrupted RNA regulation, including global changes in gene expression, missplicing, and aberrant polyadenylation, all of which were highly similar to those induced by TDP-43 knock-down. This mutation-induced TDP-43 LOF was not because of the cytoplasmic mislocalization of TDP-43. Intriguingly, in nonneuronal cells, including iPSCs and neural progenitor cells (NPCs), we did not observe impairments in RNA processing, thus indicating that the K263E mutation results in neuron-specific LOF of TDP-43. This study characterizes global RNA processing impairments induced by mutant TDP-43 and reveals the unprecedented cell type specificity of TDP-43 LOF in ALS/FTLD pathogenesis. |
---|