Cargando…
Longitudinal prediction of lung nodule invasiveness by sequential modelling with common clinical computed tomography (CT) measurements: a prediction accuracy study
BACKGROUND: Accurate preoperative prediction of the invasiveness of lung nodules on computed tomography (CT) can avoid unnecessary invasive procedures and costs for low-risk patients. While previous studies approached this task using cross-sectional data, this study aimed to utilize the commonly ava...
Autores principales: | Tao, Guangyu, Shi, Dejun, Yu, Lingming, Chen, Chunji, Zhang, Zheng, Park, Chang Min, Szurowska, Edyta, Chen, Yinan, Wang, Rui, Yu, Hong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9186168/ https://www.ncbi.nlm.nih.gov/pubmed/35693275 http://dx.doi.org/10.21037/tlcr-22-319 |
Ejemplares similares
-
Pulmonary nodule radiological diagnostic algorithm in lung cancer screening
por: Dziadziuszko, Katarzyna, et al.
Publicado: (2021) -
Prediction of pathologic stage in non-small cell lung cancer using machine learning algorithm based on CT image feature analysis
por: Yu, Lingming, et al.
Publicado: (2019) -
Preoperative Changes of Lung Nodule on Computed Tomography and Their Relationship With Pathological Outcomes
por: Zhou, Shihong, et al.
Publicado: (2022) -
Prediction of future imagery of lung nodule as growth modeling with follow-up computed tomography scans using deep learning: a retrospective cohort study
por: Tao, Guangyu, et al.
Publicado: (2022) -
Predicting malignant potential of subsolid nodules: can radiomics preempt longitudinal follow up CT?
por: Digumarthy, Subba R., et al.
Publicado: (2019)