Cargando…

Clinical value of echocardiography in evaluating hemodynamics and right ventricular function in patients with chronic thromboembolic pulmonary hypertension after balloon pulmonary angioplasty

BACKGROUND: Patients with inoperable chronic thromboembolic pulmonary hypertension (CTEPH) are eligible for balloon pulmonary angioplasty (BPA). However, the short-term effects of BPA on pulmonary hemodynamics and right ventricular (RV) function in patients with CTEPH have not been elucidated. In th...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Jiaxin, Ding, Shangwei, Zhang, Chenkai, Li, Rifei, Guo, Wenliang, Hong, Chen, Tang, Qing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AME Publishing Company 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9186241/
https://www.ncbi.nlm.nih.gov/pubmed/35693626
http://dx.doi.org/10.21037/jtd-21-1536
Descripción
Sumario:BACKGROUND: Patients with inoperable chronic thromboembolic pulmonary hypertension (CTEPH) are eligible for balloon pulmonary angioplasty (BPA). However, the short-term effects of BPA on pulmonary hemodynamics and right ventricular (RV) function in patients with CTEPH have not been elucidated. In the current study, echocardiography was conducted to explore the short-term effects of BPA on inoperable CTEPH patients. METHODS: A total of 30 inoperable CTEPH patients who underwent echocardiography before and after BPA were enrolled to the present retrospective study. Right heart catheterization (RHC) parameters, echocardiography function parameters, and echocardiography structural parameters of patients were evaluated at baseline and within 24 hours after BPA and the results were compared. RESULTS: RHC parameters including pulmonary artery systolic pressure (PASP), pulmonary artery diastolic pressure (PADP), mean pulmonary artery pressure (mPAP), and pulmonary vascular resistance (PVR), and echocardiography structural parameters including right atrium diameter (RAD), right ventricular end-diastolic area (RVEDA), right ventricular end-systolic area (RVESA), right atrium end-diastolic area (RAEDA) and right atrium end-systolic area (RAESA) significantly improved within 24 h after BPA compared with the baseline results (P<0.05). However, there were no significant differences in echocardiography function parameters including tissue Doppler-derived tricuspid lateral annular systolic velocity (S’), tricuspid annular plane systolic excursion (TAPSE), right ventricular index of myocardial performance (RIMP), right ventricular fractional area change (RVFAC) and left ventricular stroke volume (LVSV) before and after BPA. CONCLUSIONS: The findings show that a single BPA procedure significantly improves RV volume load and reduces the pulmonary blood pressure in CTEPH patients in the short-term. However, BPA does not improve RV systolic function 24 hours after the procedure. The results indicate that evaluation of RV structural and function with echocardiography is an effective approach for non-invasive monitoring of patient status after BPA.