Cargando…
Using deep learning to detect digitally encoded DNA trigger for Trojan malware in Bio-Cyber attacks
This article uses Deep Learning technologies to safeguard DNA sequencing against Bio-Cyber attacks. We consider a hybrid attack scenario where the payload is encoded into a DNA sequence to activate a Trojan malware implanted in a software tool used in the sequencing pipeline in order to allow the pe...
Autores principales: | Islam, M. S., Ivanov, S., Awan, H., Drohan, J., Balasubramaniam, S., Coffey, L., Kidambi, S., Sri-saan, W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9186480/ https://www.ncbi.nlm.nih.gov/pubmed/35688914 http://dx.doi.org/10.1038/s41598-022-13700-5 |
Ejemplares similares
-
Targeted cyber attacks: multi-staged attacks driven by exploits and malware
por: Sood, Aditya K, et al.
Publicado: (2014) -
Mobile malware attacks and defense
por: Dunham, Ken, et al.
Publicado: (2009) -
Invisible Trojan-horse attack
por: Sajeed, Shihan, et al.
Publicado: (2017) -
Malware data science: attack detection and attribution
por: Saxe, Joshua, et al.
Publicado: (2018) -
The hardware trojan war: attacks, myths, and defenses
por: Bhunia, Swarup, et al.
Publicado: (2017)