Cargando…
Identification of combined biomarkers for predicting the risk of osteoporosis using machine learning
Osteoporosis is a severe chronic skeletal disorder that affects older individuals, especially postmenopausal women. However, molecular biomarkers for predicting the risk of osteoporosis are not well characterized. The aim of this study was to identify combined biomarkers for predicting the risk of o...
Autores principales: | Zheng, Zhenlong, Zhang, Xianglan, Oh, Bong-Kyeong, Kim, Ki-Yeol |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9186773/ https://www.ncbi.nlm.nih.gov/pubmed/35580864 http://dx.doi.org/10.18632/aging.204084 |
Ejemplares similares
-
A nomogram combining clinical factors and biomarkers for predicting the recurrence of high-risk cutaneous squamous cell carcinoma
por: Oh, Yeongjoo, et al.
Publicado: (2022) -
Identification of a combined biomarker for malignant transformation in oral submucous fibrosis
por: Bazarsad, Shadavlonjid, et al.
Publicado: (2016) -
Identification of biomarkers associated with diagnosis of postmenopausal osteoporosis patients based on bioinformatics and machine learning
por: Huang, Xinzhou, et al.
Publicado: (2023) -
Use of a Combined Gene Expression Profile in Implementing a Drug Sensitivity Predictive Model for Breast Cancer
por: Zhang, Xianglan, et al.
Publicado: (2017) -
Osteoporosis Risk Prediction for Bone Mineral Density Assessment of Postmenopausal Women Using Machine Learning
por: Yoo, Tae Keun, et al.
Publicado: (2013)