Cargando…
A Novel Fluorescent Dye Extracted from Buddleja officinalis for Labeling Mitochondria after Fixation
Mitochondria are versatile organelles and function by communicating with cellular ecosystems. The fluorescent colocalization analysis after fixation is a highly intuitive method to understand the role of mitochondria. However, there are few fluorescent dyes available for mitochondrial staining after...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9187463/ https://www.ncbi.nlm.nih.gov/pubmed/35711296 http://dx.doi.org/10.1155/2022/7486005 |
Sumario: | Mitochondria are versatile organelles and function by communicating with cellular ecosystems. The fluorescent colocalization analysis after fixation is a highly intuitive method to understand the role of mitochondria. However, there are few fluorescent dyes available for mitochondrial staining after fixation. In this study, a novel fluorescent dye (BO-dye), extracted from Buddleja officinalis, was applied for mitochondrial staining in fixed immortalized human oral keratinocytes. The BO-dye (excitation: 414 nm, emission: 677 nm) is a small fluorescent molecular dye, which can cross the cytomembrane without permeabilization. We assume that the BO-dye could aggregate and bind to the mitochondria stably. BO-dye exhibited a mega-Stokes shift (>250 nm), which is an important feature that could reduce self-quenching and enhance the signal-to-noise ratio. Analysis of photophysical properties revealed that the BO-dye is temperature and pH insensitive, and it exhibits superior photostability. These results indicate that BO-dye can be considered an alternative fluorescent dye for labeling mitochondria after fixation. |
---|