Cargando…
Analysis of hollow wall effect on the fluid dynamics in the orbitally shaken bioreactors
Orbitally shaking bioreactors (OSRs) have recently been increasingly applied in the biopharmaceutical industry because they can provide a suitable environment for mammalian cell growth and protein expression. Fluid dynamics information is crucial for analyzing or optimizing of different types of bio...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9187773/ https://www.ncbi.nlm.nih.gov/pubmed/35688858 http://dx.doi.org/10.1038/s41598-022-13441-5 |
_version_ | 1784725240045109248 |
---|---|
author | Zhu, Likuan Chen, Weiqing Zhao, Chunyang |
author_facet | Zhu, Likuan Chen, Weiqing Zhao, Chunyang |
author_sort | Zhu, Likuan |
collection | PubMed |
description | Orbitally shaking bioreactors (OSRs) have recently been increasingly applied in the biopharmaceutical industry because they can provide a suitable environment for mammalian cell growth and protein expression. Fluid dynamics information is crucial for analyzing or optimizing of different types of bioreactors. Considering that the structure has an important influence on the fluid dynamics in a bioreactor, it necessary to design or optimize its structure by the computational fluid dynamics (CFD) approach. The aim of this study is to optimize the wall structure of a hollow cylinder OSR proposed in our previous work. Based on previous research, the influences of the hollow wall of the OSR on fluid dynamics and the volumetric mass transfer coefficient ([Formula: see text] ) were analysed by the established CFD model. The results showed that the mixing performance of OSR could be improved by decreasing the installation height of the hollow wall. An installation height of 30 mm was found to be most favourable for mixing. The reliability of the CFD model was verified by comparing the liquid wave height and liquid wave shape between the simulation and experiment. The shear stress in the hollow cylinder OSR was proven gentle for mammalian cell cultivation. |
format | Online Article Text |
id | pubmed-9187773 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-91877732022-06-12 Analysis of hollow wall effect on the fluid dynamics in the orbitally shaken bioreactors Zhu, Likuan Chen, Weiqing Zhao, Chunyang Sci Rep Article Orbitally shaking bioreactors (OSRs) have recently been increasingly applied in the biopharmaceutical industry because they can provide a suitable environment for mammalian cell growth and protein expression. Fluid dynamics information is crucial for analyzing or optimizing of different types of bioreactors. Considering that the structure has an important influence on the fluid dynamics in a bioreactor, it necessary to design or optimize its structure by the computational fluid dynamics (CFD) approach. The aim of this study is to optimize the wall structure of a hollow cylinder OSR proposed in our previous work. Based on previous research, the influences of the hollow wall of the OSR on fluid dynamics and the volumetric mass transfer coefficient ([Formula: see text] ) were analysed by the established CFD model. The results showed that the mixing performance of OSR could be improved by decreasing the installation height of the hollow wall. An installation height of 30 mm was found to be most favourable for mixing. The reliability of the CFD model was verified by comparing the liquid wave height and liquid wave shape between the simulation and experiment. The shear stress in the hollow cylinder OSR was proven gentle for mammalian cell cultivation. Nature Publishing Group UK 2022-06-10 /pmc/articles/PMC9187773/ /pubmed/35688858 http://dx.doi.org/10.1038/s41598-022-13441-5 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Zhu, Likuan Chen, Weiqing Zhao, Chunyang Analysis of hollow wall effect on the fluid dynamics in the orbitally shaken bioreactors |
title | Analysis of hollow wall effect on the fluid dynamics in the orbitally shaken bioreactors |
title_full | Analysis of hollow wall effect on the fluid dynamics in the orbitally shaken bioreactors |
title_fullStr | Analysis of hollow wall effect on the fluid dynamics in the orbitally shaken bioreactors |
title_full_unstemmed | Analysis of hollow wall effect on the fluid dynamics in the orbitally shaken bioreactors |
title_short | Analysis of hollow wall effect on the fluid dynamics in the orbitally shaken bioreactors |
title_sort | analysis of hollow wall effect on the fluid dynamics in the orbitally shaken bioreactors |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9187773/ https://www.ncbi.nlm.nih.gov/pubmed/35688858 http://dx.doi.org/10.1038/s41598-022-13441-5 |
work_keys_str_mv | AT zhulikuan analysisofhollowwalleffectonthefluiddynamicsintheorbitallyshakenbioreactors AT chenweiqing analysisofhollowwalleffectonthefluiddynamicsintheorbitallyshakenbioreactors AT zhaochunyang analysisofhollowwalleffectonthefluiddynamicsintheorbitallyshakenbioreactors |