Cargando…
A Prehospital Triage System to Detect Traumatic Intracranial Hemorrhage Using Machine Learning Algorithms
IMPORTANCE: An adequate system for triaging patients with head trauma in prehospital settings and choosing optimal medical institutions is essential for improving the prognosis of these patients. To our knowledge, there has been no established way to stratify these patients based on their head traum...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Association
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9187955/ https://www.ncbi.nlm.nih.gov/pubmed/35687335 http://dx.doi.org/10.1001/jamanetworkopen.2022.16393 |
_version_ | 1784725269544697856 |
---|---|
author | Abe, Daisu Inaji, Motoki Hase, Takeshi Takahashi, Shota Sakai, Ryosuke Ayabe, Fuga Tanaka, Yoji Otomo, Yasuhiro Maehara, Taketoshi |
author_facet | Abe, Daisu Inaji, Motoki Hase, Takeshi Takahashi, Shota Sakai, Ryosuke Ayabe, Fuga Tanaka, Yoji Otomo, Yasuhiro Maehara, Taketoshi |
author_sort | Abe, Daisu |
collection | PubMed |
description | IMPORTANCE: An adequate system for triaging patients with head trauma in prehospital settings and choosing optimal medical institutions is essential for improving the prognosis of these patients. To our knowledge, there has been no established way to stratify these patients based on their head trauma severity that can be used by ambulance crews at an injury site. OBJECTIVES: To develop a prehospital triage system to stratify patients with head trauma according to trauma severity by using several machine learning techniques and to evaluate the predictive accuracy of these techniques. DESIGN, SETTING, AND PARTICIPANTS: This single-center retrospective cohort study was conducted by reviewing the electronic medical records of consecutive patients who were transported to Tokyo Medical and Dental University Hospital in Japan from April 1, 2018, to March 31, 2021. Patients younger than 16 years with cardiopulmonary arrest on arrival or with a significant amount of missing data were excluded. MAIN OUTCOMES AND MEASURES: Machine learning–based prediction models to detect the presence of traumatic intracranial hemorrhage were constructed. The predictive accuracy of the models was evaluated with the area under the receiver operating curve (ROC-AUC), area under the precision recall curve (PR-AUC), sensitivity, specificity, and other representative statistics. RESULTS: A total of 2123 patients (1527 male patients [71.9%]; mean [SD] age, 57.6 [19.8] years) with head trauma were enrolled in this study. Traumatic intracranial hemorrhage was detected in 258 patients (12.2%). Among several machine learning algorithms, extreme gradient boosting (XGBoost) achieved the mean (SD) highest ROC-AUC (0.78 [0.02]) and PR-AUC (0.46 [0.01]) in cross-validation studies. In the testing set, the ROC-AUC was 0.80, the sensitivity was 74.0% (95% CI, 59.7%-85.4%), and the specificity was 74.9% (95% CI, 70.2%-79.3%). The prediction model using the National Institute for Health and Care Excellence (NICE) guidelines, which was calculated after consultation with physicians, had a sensitivity of 72.0% (95% CI, 57.5%-83.8%) and a specificity of 73.3% (95% CI, 68.7%-77.7%). The McNemar test revealed no statistically significant differences between the XGBoost algorithm and the NICE guidelines for sensitivity or specificity (P = .80 and P = .55, respectively). CONCLUSIONS AND RELEVANCE: In this cohort study, the prediction model achieved a comparatively accurate performance in detecting traumatic intracranial hemorrhage using only the simple pretransportation information from the patient. Further validation with a prospective multicenter data set is needed. |
format | Online Article Text |
id | pubmed-9187955 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Medical Association |
record_format | MEDLINE/PubMed |
spelling | pubmed-91879552022-06-16 A Prehospital Triage System to Detect Traumatic Intracranial Hemorrhage Using Machine Learning Algorithms Abe, Daisu Inaji, Motoki Hase, Takeshi Takahashi, Shota Sakai, Ryosuke Ayabe, Fuga Tanaka, Yoji Otomo, Yasuhiro Maehara, Taketoshi JAMA Netw Open Original Investigation IMPORTANCE: An adequate system for triaging patients with head trauma in prehospital settings and choosing optimal medical institutions is essential for improving the prognosis of these patients. To our knowledge, there has been no established way to stratify these patients based on their head trauma severity that can be used by ambulance crews at an injury site. OBJECTIVES: To develop a prehospital triage system to stratify patients with head trauma according to trauma severity by using several machine learning techniques and to evaluate the predictive accuracy of these techniques. DESIGN, SETTING, AND PARTICIPANTS: This single-center retrospective cohort study was conducted by reviewing the electronic medical records of consecutive patients who were transported to Tokyo Medical and Dental University Hospital in Japan from April 1, 2018, to March 31, 2021. Patients younger than 16 years with cardiopulmonary arrest on arrival or with a significant amount of missing data were excluded. MAIN OUTCOMES AND MEASURES: Machine learning–based prediction models to detect the presence of traumatic intracranial hemorrhage were constructed. The predictive accuracy of the models was evaluated with the area under the receiver operating curve (ROC-AUC), area under the precision recall curve (PR-AUC), sensitivity, specificity, and other representative statistics. RESULTS: A total of 2123 patients (1527 male patients [71.9%]; mean [SD] age, 57.6 [19.8] years) with head trauma were enrolled in this study. Traumatic intracranial hemorrhage was detected in 258 patients (12.2%). Among several machine learning algorithms, extreme gradient boosting (XGBoost) achieved the mean (SD) highest ROC-AUC (0.78 [0.02]) and PR-AUC (0.46 [0.01]) in cross-validation studies. In the testing set, the ROC-AUC was 0.80, the sensitivity was 74.0% (95% CI, 59.7%-85.4%), and the specificity was 74.9% (95% CI, 70.2%-79.3%). The prediction model using the National Institute for Health and Care Excellence (NICE) guidelines, which was calculated after consultation with physicians, had a sensitivity of 72.0% (95% CI, 57.5%-83.8%) and a specificity of 73.3% (95% CI, 68.7%-77.7%). The McNemar test revealed no statistically significant differences between the XGBoost algorithm and the NICE guidelines for sensitivity or specificity (P = .80 and P = .55, respectively). CONCLUSIONS AND RELEVANCE: In this cohort study, the prediction model achieved a comparatively accurate performance in detecting traumatic intracranial hemorrhage using only the simple pretransportation information from the patient. Further validation with a prospective multicenter data set is needed. American Medical Association 2022-06-10 /pmc/articles/PMC9187955/ /pubmed/35687335 http://dx.doi.org/10.1001/jamanetworkopen.2022.16393 Text en Copyright 2022 Abe D et al. JAMA Network Open. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the CC-BY License. |
spellingShingle | Original Investigation Abe, Daisu Inaji, Motoki Hase, Takeshi Takahashi, Shota Sakai, Ryosuke Ayabe, Fuga Tanaka, Yoji Otomo, Yasuhiro Maehara, Taketoshi A Prehospital Triage System to Detect Traumatic Intracranial Hemorrhage Using Machine Learning Algorithms |
title | A Prehospital Triage System to Detect Traumatic Intracranial Hemorrhage Using Machine Learning Algorithms |
title_full | A Prehospital Triage System to Detect Traumatic Intracranial Hemorrhage Using Machine Learning Algorithms |
title_fullStr | A Prehospital Triage System to Detect Traumatic Intracranial Hemorrhage Using Machine Learning Algorithms |
title_full_unstemmed | A Prehospital Triage System to Detect Traumatic Intracranial Hemorrhage Using Machine Learning Algorithms |
title_short | A Prehospital Triage System to Detect Traumatic Intracranial Hemorrhage Using Machine Learning Algorithms |
title_sort | prehospital triage system to detect traumatic intracranial hemorrhage using machine learning algorithms |
topic | Original Investigation |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9187955/ https://www.ncbi.nlm.nih.gov/pubmed/35687335 http://dx.doi.org/10.1001/jamanetworkopen.2022.16393 |
work_keys_str_mv | AT abedaisu aprehospitaltriagesystemtodetecttraumaticintracranialhemorrhageusingmachinelearningalgorithms AT inajimotoki aprehospitaltriagesystemtodetecttraumaticintracranialhemorrhageusingmachinelearningalgorithms AT hasetakeshi aprehospitaltriagesystemtodetecttraumaticintracranialhemorrhageusingmachinelearningalgorithms AT takahashishota aprehospitaltriagesystemtodetecttraumaticintracranialhemorrhageusingmachinelearningalgorithms AT sakairyosuke aprehospitaltriagesystemtodetecttraumaticintracranialhemorrhageusingmachinelearningalgorithms AT ayabefuga aprehospitaltriagesystemtodetecttraumaticintracranialhemorrhageusingmachinelearningalgorithms AT tanakayoji aprehospitaltriagesystemtodetecttraumaticintracranialhemorrhageusingmachinelearningalgorithms AT otomoyasuhiro aprehospitaltriagesystemtodetecttraumaticintracranialhemorrhageusingmachinelearningalgorithms AT maeharataketoshi aprehospitaltriagesystemtodetecttraumaticintracranialhemorrhageusingmachinelearningalgorithms AT abedaisu prehospitaltriagesystemtodetecttraumaticintracranialhemorrhageusingmachinelearningalgorithms AT inajimotoki prehospitaltriagesystemtodetecttraumaticintracranialhemorrhageusingmachinelearningalgorithms AT hasetakeshi prehospitaltriagesystemtodetecttraumaticintracranialhemorrhageusingmachinelearningalgorithms AT takahashishota prehospitaltriagesystemtodetecttraumaticintracranialhemorrhageusingmachinelearningalgorithms AT sakairyosuke prehospitaltriagesystemtodetecttraumaticintracranialhemorrhageusingmachinelearningalgorithms AT ayabefuga prehospitaltriagesystemtodetecttraumaticintracranialhemorrhageusingmachinelearningalgorithms AT tanakayoji prehospitaltriagesystemtodetecttraumaticintracranialhemorrhageusingmachinelearningalgorithms AT otomoyasuhiro prehospitaltriagesystemtodetecttraumaticintracranialhemorrhageusingmachinelearningalgorithms AT maeharataketoshi prehospitaltriagesystemtodetecttraumaticintracranialhemorrhageusingmachinelearningalgorithms |