Cargando…

Solubilized chlorin e6-layered double hydroxide complex for anticancer photodynamic therapy

BACKGROUND: Layered double hydroxides (LDHs) are one type of 2-dimensional material with unique structure and strongly positive surface charge. Particularly, LDHs can be exfoliated by mono-layered double hydroxides (MLHs) as a single layer, showing an increased surface area. Therefore, there is a la...

Descripción completa

Detalles Bibliográficos
Autores principales: Jo, Young-um, Sim, HyunJune, Lee, Chung-Sung, Kim, Kyoung Sub, Na, Kun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9188148/
https://www.ncbi.nlm.nih.gov/pubmed/35690811
http://dx.doi.org/10.1186/s40824-022-00272-8
Descripción
Sumario:BACKGROUND: Layered double hydroxides (LDHs) are one type of 2-dimensional material with unique structure and strongly positive surface charge. Particularly, LDHs can be exfoliated by mono-layered double hydroxides (MLHs) as a single layer, showing an increased surface area. Therefore, there is a large focus on LDHs for drug delivery applications. Furthermore, most photosensitizers are hydrophobic that they cannot be soluble in aqueous solvents. Herein, we designed a simple way to solubilize hydrophobic photosensitizers by MLH with electrostatic interactions for anticancer photodynamic therapy (PDT), which has tremendous therapeutic advantages. The photosensitizer solubilized via loading on the MLH exhibited fluorescence and singlet oxygen-generation activities in aqueous solvent without chemical modification, resulting in photo-mediated anticancer treatment. METHODS: Negatively charged hydrophobic photosensitizers, chlorin e6 (Ce6) were solubilized by loading on the MLHs through the electrostatic interaction between positively charged MLHs. MLH/Ce6 complexes evaluated for physico-chemical characterization, pH-sensitive release property, in vitro photocytotoxicity, and in vivo tumor ablation. RESULTS: The photosensitizer solubilized via MLH exhibited fluorescence intensity and singlet-oxygen generation activities in aqueous solvent without chemical modification, resulting photocytotoxicity in cancer cells. The encapsulation efficiency of Ce6 increased to 21.2% through MLH compared to 0.6% when using LDH. In tumor-bearing mice, PDT with solubilized MLH/Ce6 indicated a tumor-suppressing effect approximately 3.4-fold greater than that obtained when Ce6 was injected alone. CONCLUSIONS: This study provided the solubilized Ce6 by the MLH in a simple way without chemical modification. We demonstrated that MLH/Ce6 complexes would have a great potential for anticancer PDT. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40824-022-00272-8.