Cargando…
Multi-type feature fusion based on graph neural network for drug-drug interaction prediction
BACKGROUND: Drug-Drug interactions (DDIs) are a challenging problem in drug research. Drug combination therapy is an effective solution to treat diseases, but it can also cause serious side effects. Therefore, DDIs prediction is critical in pharmacology. Recently, researchers have been using deep le...
Autores principales: | He, Changxiang, Liu, Yuru, Li, Hao, Zhang, Hui, Mao, Yaping, Qin, Xiaofei, Liu, Lele, Zhang, Xuedian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9188183/ https://www.ncbi.nlm.nih.gov/pubmed/35689200 http://dx.doi.org/10.1186/s12859-022-04763-2 |
Ejemplares similares
-
Long-distance dependency combined multi-hop graph neural networks for protein–protein interactions prediction
por: Zhong, Wen, et al.
Publicado: (2022) -
Detecting Drug–Target Interactions with Feature Similarity Fusion and Molecular Graphs
por: Lin, Xiaoli, et al.
Publicado: (2022) -
MSGNN-DTA: Multi-Scale Topological Feature Fusion Based on Graph Neural Networks for Drug–Target Binding Affinity Prediction
por: Wang, Shudong, et al.
Publicado: (2023) -
Multi-view feature representation and fusion for drug-drug interactions prediction
por: Wang, Jing, et al.
Publicado: (2023) -
An efficient self-attention network for skeleton-based action recognition
por: Qin, Xiaofei, et al.
Publicado: (2022)