Cargando…

Looking into the world’s largest elephant population in search of ligninolytic microorganisms for biorefineries: a mini-review

Gastrointestinal tracts (GIT) of herbivores are lignin-rich environments with the potential to find ligninolytic microorganisms. The occurrence of the microorganisms in herbivore GIT is a well-documented mutualistic relationship where the former benefits from the provision of nutrients and the latte...

Descripción completa

Detalles Bibliográficos
Autores principales: Rammala, Bame, Zhou, Nerve
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9188235/
https://www.ncbi.nlm.nih.gov/pubmed/35689287
http://dx.doi.org/10.1186/s13068-022-02159-1
Descripción
Sumario:Gastrointestinal tracts (GIT) of herbivores are lignin-rich environments with the potential to find ligninolytic microorganisms. The occurrence of the microorganisms in herbivore GIT is a well-documented mutualistic relationship where the former benefits from the provision of nutrients and the latter benefits from the microorganism-assisted digestion of their recalcitrant lignin diets. Elephants are one of the largest herbivores that rely on the microbial anaerobic fermentation of their bulky recalcitrant low-quality forage lignocellulosic diet given their inability to break down major components of plant cells. Tapping the potential of these mutualistic associations in the biggest population of elephants in the whole world found in Botswana is attractive in the valorisation of the bulky recalcitrant lignin waste stream generated from the pulp and paper, biofuel, and agro-industries. Despite the massive potential as a feedstock for industrial fermentations, few microorganisms have been commercialised. This review focuses on the potential of microbiota from the gastrointestinal tract and excreta of the worlds’ largest population of elephants of Botswana as a potential source of extremophilic ligninolytic microorganisms. The review further discusses the recalcitrance of lignin, achievements, limitations, and challenges with its biological depolymerisation. Methods of isolation of microorganisms from elephant dung and their improvement as industrial strains are further highlighted.