Cargando…
Improved wood species identification based on multi-view imagery of the three anatomical planes
BACKGROUND: The identification of tropical African wood species based on microscopic imagery is a challenging problem due to the heterogeneous nature of the composition of wood combined with the vast number of candidate species. Image classification methods that rely on machine learning can facilita...
Autores principales: | Rosa da Silva, Núbia, Deklerck, Victor, Baetens, Jan M., Van den Bulcke, Jan, De Ridder, Maaike, Rousseau, Mélissa, Bruno, Odemir Martinez, Beeckman, Hans, Van Acker, Joris, De Baets, Bernard, Verwaeren, Jan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9188236/ https://www.ncbi.nlm.nih.gov/pubmed/35690828 http://dx.doi.org/10.1186/s13007-022-00910-1 |
Ejemplares similares
-
SmartWoodID—an image collection of large end-grain surfaces to support wood identification systems
por: De Blaere, Ruben, et al.
Publicado: (2023) -
Moisture Dynamics of Wood-Based Panels and Wood Fibre Insulation Materials
por: De Ligne, Liselotte, et al.
Publicado: (2022) -
Analysis of spatio-temporal fungal growth dynamics under different environmental conditions
por: De Ligne, Liselotte, et al.
Publicado: (2019) -
Wood Specific Gravity Variations and Biomass of Central African Tree Species: The Simple Choice of the Outer Wood
por: Bastin, Jean-François, et al.
Publicado: (2015) -
Detecting thin adhesive coatings in wood fiber materials with laboratory-based dual-energy computed tomography (DECT)
por: Kibleur, Pierre, et al.
Publicado: (2022)