Cargando…
Computation and memory optimized spectral domain convolutional neural network for throughput and energy-efficient inference
Conventional convolutional neural networks (CNNs) present a high computational workload and memory access cost (CMC). Spectral domain CNNs (SpCNNs) offer a computationally efficient approach to compute CNN training and inference. This paper investigates CMC of SpCNNs and its contributing components...
Autores principales: | Rizvi, Shahriyar Masud, Rahman, Ab Al-Hadi Ab, Sheikh, Usman Ullah, Fuad, Kazi Ahmed Asif, Shehzad, Hafiz Muhammad Faisal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9188280/ https://www.ncbi.nlm.nih.gov/pubmed/35730044 http://dx.doi.org/10.1007/s10489-022-03756-1 |
Ejemplares similares
-
Graph Neural Network(GNN) Inference of FPGA
por: Fuad, Kazi Ahmed Asif
Publicado: (2019) -
Spectral, convolution and numerical techniques in circuit theory
por: Badrieh, Fuad
Publicado: (2018) -
Super High-Throughput
Screening of Enzyme Variants
by Spectral Graph Convolutional Neural Networks
por: Ramírez-Palacios, Carlos, et al.
Publicado: (2023) -
Accelerating Inference of Convolutional Neural Networks Using In-memory Computing
por: Dazzi, Martino, et al.
Publicado: (2021) -
Characterization of bacterial communities associated with blood-fed and starved tropical bed bugs, Cimex hemipterus (F.) (Hemiptera): a high throughput metabarcoding analysis
por: Lim, Li, et al.
Publicado: (2021)