Cargando…
Data analytics and knowledge management approach for COVID-19 prediction and control
The Coronavirus Disease (COVID-19) caused by SARS-CoV-2, continues to be a global threat. The major global concern among scientists and researchers is to develop innovative digital solutions for prediction and control of infection and to discover drugs for its cure. In this paper we developed a stra...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Nature Singapore
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9188422/ https://www.ncbi.nlm.nih.gov/pubmed/35729979 http://dx.doi.org/10.1007/s41870-022-00967-0 |
Sumario: | The Coronavirus Disease (COVID-19) caused by SARS-CoV-2, continues to be a global threat. The major global concern among scientists and researchers is to develop innovative digital solutions for prediction and control of infection and to discover drugs for its cure. In this paper we developed a strategic technical solution for surveillance and control of COVID-19 in Delhi-National Capital Region (NCR). This work aims to elucidate the Delhi COVID-19 Data Management Framework, the backend mechanism of integrated Command and Control Center (iCCC) with plugged-in modules for various administrative, medical and field operations. Based on the time-series data extracted from iCCC repository, the forecasting of COVID-19 spread has been carried out for Delhi using the Auto-Regressive Integrated Moving Average (ARIMA) model as it can effectively predict the logistics requirements, active cases, positive patients, and death rate. The intelligence generated through this research has paved the way for the Government of National Capital Territory Delhi to strategize COVID-19 related policies formulation and implementation on real time basis. The outcome of this innovative work has led to the drastic reduction in COVID-19 positive cases and deaths in Delhi-NCR. |
---|