Cargando…
Quantitative digital histopathology and machine learning to predict pathological complete response to chemotherapy in breast cancer patients using pre-treatment tumor biopsies
Complete pathological response (pCR) to neoadjuvant chemotherapy (NAC) is a prognostic factor for breast cancer (BC) patients and is correlated with improved survival. However, pCR rates are variable to standard NAC, depending on BC subtype. This study investigates quantitative digital histopatholog...
Autores principales: | Saednia, Khadijeh, Lagree, Andrew, Alera, Marie A., Fleshner, Lauren, Shiner, Audrey, Law, Ethan, Law, Brianna, Dodington, David W., Lu, Fang-I, Tran, William T., Sadeghi-Naini, Ali |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9188550/ https://www.ncbi.nlm.nih.gov/pubmed/35690630 http://dx.doi.org/10.1038/s41598-022-13917-4 |
Ejemplares similares
-
Assessment of Digital Pathology Imaging Biomarkers Associated with Breast Cancer Histologic Grade
por: Lagree, Andrew, et al.
Publicado: (2021) -
Predicting Patterns of Distant Metastasis in Breast Cancer Patients following Local Regional Therapy Using Machine Learning
por: Shiner, Audrey, et al.
Publicado: (2023) -
A review and comparison of breast tumor cell nuclei segmentation performances using deep convolutional neural networks
por: Lagree, Andrew, et al.
Publicado: (2021) -
27586 Beyond digital pathology: A portable microscope for painless, real-time examination of skin histopathology without biopsy
por: Sanchez, Gabriel, et al.
Publicado: (2021) -
PROACTING: predicting pathological complete response to neoadjuvant chemotherapy in breast cancer from routine diagnostic histopathology biopsies with deep learning
por: Aswolinskiy, Witali, et al.
Publicado: (2023)