Cargando…

COVID-19 hospitalizations forecasts using internet search data

As the COVID-19 spread over the globe and new variants of COVID-19 keep occurring, reliable real-time forecasts of COVID-19 hospitalizations are critical for public health decisions on medical resources allocations. This paper aims to forecast future 2 weeks national and state-level COVID-19 new hos...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Tao, Ma, Simin, Baek, Soobin, Yang, Shihao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9188562/
https://www.ncbi.nlm.nih.gov/pubmed/35690619
http://dx.doi.org/10.1038/s41598-022-13162-9
Descripción
Sumario:As the COVID-19 spread over the globe and new variants of COVID-19 keep occurring, reliable real-time forecasts of COVID-19 hospitalizations are critical for public health decisions on medical resources allocations. This paper aims to forecast future 2 weeks national and state-level COVID-19 new hospital admissions in the United States. Our method is inspired by the strong association between public search behavior and hospitalization admissions and is extended from a previously-proposed influenza tracking model, AutoRegression with GOogle search data (ARGO). Our LASSO-penalized linear regression method efficiently combines Google search information and COVID-19 related time series information with dynamic training and rolling window prediction. Compared to other publicly available models collected from COVID-19 forecast hub, our method achieves substantial error reduction in a retrospective out-of-sample evaluation from Jan 4, 2021, to Dec 27, 2021. Overall, we showed that our method is flexible, self-correcting, robust, accurate, and interpretable, making it a potentially powerful tool to assist healthcare officials and decision making for the current and future infectious disease outbreaks.