Cargando…
A deep learning model to classify neoplastic state and tissue origin from transcriptomic data
Application of deep learning methods to transcriptomic data has the potential to enhance the accuracy and efficiency of tissue classification and cell state identification. Herein, we developed a multitask deep learning model for tissue classification combining publicly available whole transcriptomi...
Autores principales: | Hong, James, Hachem, Laureen D., Fehlings, Michael G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9188604/ https://www.ncbi.nlm.nih.gov/pubmed/35690622 http://dx.doi.org/10.1038/s41598-022-13665-5 |
Ejemplares similares
-
Verifying explainability of a deep learning tissue classifier trained on RNA-seq data
por: Yap, Melvyn, et al.
Publicado: (2021) -
Deep learning model for classifying endometrial lesions
por: Zhang, YunZheng, et al.
Publicado: (2021) -
A transcriptome-Based Deep Neural Network Classifier for Identifying the Site of Origin in Mucinous Cancer
por: Ahn, Taejin, et al.
Publicado: (2022) -
Machine Learning Classifiers for Endometriosis Using Transcriptomics and Methylomics Data
por: Akter, Sadia, et al.
Publicado: (2019) -
Excitotoxic glutamate levels drive spinal cord ependymal stem cell proliferation and fate specification through CP-AMPAR signaling
por: Hachem, Laureen D., et al.
Publicado: (2023)