Cargando…
The role of melatonin on caspase-3-like activity and expression of the genes involved in programmed cell death (PCD) induced by in vitro salt stress in alfalfa (Medicago sativa L.) roots
BACKGROUND: Alfalfa (Medicago sativa L.) is the most cultivated forage plant as a model in legumes. Salinity stress due to Na(+) toxicity causes severe, oxidative stress as a main reason for program cell death (PCD) in plants. Melatonin application can increase plant productivity in response to dive...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Nature Singapore
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9188634/ https://www.ncbi.nlm.nih.gov/pubmed/35689706 http://dx.doi.org/10.1186/s40529-022-00348-7 |
Sumario: | BACKGROUND: Alfalfa (Medicago sativa L.) is the most cultivated forage plant as a model in legumes. Salinity stress due to Na(+) toxicity causes severe, oxidative stress as a main reason for program cell death (PCD) in plants. Melatonin application can increase plant productivity in response to diverse stressors via modulating plant antioxidant mechanisms and PCD inhibition in plants. RESULTS: Alfalfa roots were subjected to different concentrations of in vitro salinity supplemented with melatonin (0.1, 10 and 15 µM) for ten days. Application of melatonin under salinity stress reduced ROS, H(2)O(2) and [Formula: see text] content and showed a dramatic impact on TTC reduction and augmented cell viability. Interestingly, melatonin inhibited caspase 3-like protease activity and could decrease DNA fragmentation induced by salinity while increased expression of anti-apoptotic genes BI-1, UCP1-UCP2 involved in PCD pathway. In contrast, in 300 mM salinity, γVPE gene as a proapoptotic of PCD down-regulated significantly. CONCLUSIONS: For the first time, present data showed that, melatonin plays a major function in preventing PCD in alfalfa root meristem cells. We attempted to offer a mechanism for the function of melatonin as an anti-apoptotic agent by demonstrating significant actions of melatonin on mitochondria proteins, such as UCPs, in a manner similar to animal cells. |
---|