Cargando…

Parameters from site classification to harmonize MRI clinical studies: Application to a multi‐site Parkinson's disease dataset

Multi‐site MRI datasets are crucial for big data research. However, neuroimaging studies must face the batch effect. Here, we propose an approach that uses the predictive probabilities provided by Gaussian processes (GPs) to harmonize clinical‐based studies. A multi‐site dataset of 216 Parkinson...

Descripción completa

Detalles Bibliográficos
Autores principales: C. Monte‐Rubio, Gemma, Segura, Barbara, P. Strafella, Antonio, van Eimeren, Thilo, Ibarretxe‐Bilbao, Naroa, Diez‐Cirarda, Maria, Eggers, Carsten, Lucas‐Jiménez, Olaia, Ojeda, Natalia, Peña, Javier, Ruppert, Marina C., Sala‐Llonch, Roser, Theis, Hendrik, Uribe, Carme, Junque, Carme
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons, Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9188966/
https://www.ncbi.nlm.nih.gov/pubmed/35305545
http://dx.doi.org/10.1002/hbm.25838
_version_ 1784725490538381312
author C. Monte‐Rubio, Gemma
Segura, Barbara
P. Strafella, Antonio
van Eimeren, Thilo
Ibarretxe‐Bilbao, Naroa
Diez‐Cirarda, Maria
Eggers, Carsten
Lucas‐Jiménez, Olaia
Ojeda, Natalia
Peña, Javier
Ruppert, Marina C.
Sala‐Llonch, Roser
Theis, Hendrik
Uribe, Carme
Junque, Carme
author_facet C. Monte‐Rubio, Gemma
Segura, Barbara
P. Strafella, Antonio
van Eimeren, Thilo
Ibarretxe‐Bilbao, Naroa
Diez‐Cirarda, Maria
Eggers, Carsten
Lucas‐Jiménez, Olaia
Ojeda, Natalia
Peña, Javier
Ruppert, Marina C.
Sala‐Llonch, Roser
Theis, Hendrik
Uribe, Carme
Junque, Carme
author_sort C. Monte‐Rubio, Gemma
collection PubMed
description Multi‐site MRI datasets are crucial for big data research. However, neuroimaging studies must face the batch effect. Here, we propose an approach that uses the predictive probabilities provided by Gaussian processes (GPs) to harmonize clinical‐based studies. A multi‐site dataset of 216 Parkinson's disease (PD) patients and 87 healthy subjects (HS) was used. We performed a site GP classification using MRI data. The outcomes estimated from this classification, redefined like Weighted HARMonization PArameters (WHARMPA), were used as regressors in two different clinical studies: A PD versus HS machine learning classification using GP, and a VBM comparison (FWE‐p < .05, k = 100). Same studies were also conducted using conventional Boolean site covariates, and without information about site belonging. The results from site GP classification provided high scores, balanced accuracy (BAC) was 98.39% for grey matter images. PD versus HS classification performed better when the WHARMPA were used to harmonize (BAC = 78.60%; AUC = 0.90) than when using the Boolean site information (BAC = 56.31%; AUC = 0.71) and without it (BAC = 57.22%; AUC = 0.73). The VBM analysis harmonized using WHARMPA provided larger and more statistically robust clusters in regions previously reported in PD than when the Boolean site covariates or no corrections were added to the model. In conclusion, WHARMPA might encode global site‐effects quantitatively and allow the harmonization of data. This method is user‐friendly and provides a powerful solution, without complex implementations, to clean the analyses by removing variability associated with the differences between sites.
format Online
Article
Text
id pubmed-9188966
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley & Sons, Inc.
record_format MEDLINE/PubMed
spelling pubmed-91889662022-06-15 Parameters from site classification to harmonize MRI clinical studies: Application to a multi‐site Parkinson's disease dataset C. Monte‐Rubio, Gemma Segura, Barbara P. Strafella, Antonio van Eimeren, Thilo Ibarretxe‐Bilbao, Naroa Diez‐Cirarda, Maria Eggers, Carsten Lucas‐Jiménez, Olaia Ojeda, Natalia Peña, Javier Ruppert, Marina C. Sala‐Llonch, Roser Theis, Hendrik Uribe, Carme Junque, Carme Hum Brain Mapp Research Articles Multi‐site MRI datasets are crucial for big data research. However, neuroimaging studies must face the batch effect. Here, we propose an approach that uses the predictive probabilities provided by Gaussian processes (GPs) to harmonize clinical‐based studies. A multi‐site dataset of 216 Parkinson's disease (PD) patients and 87 healthy subjects (HS) was used. We performed a site GP classification using MRI data. The outcomes estimated from this classification, redefined like Weighted HARMonization PArameters (WHARMPA), were used as regressors in two different clinical studies: A PD versus HS machine learning classification using GP, and a VBM comparison (FWE‐p < .05, k = 100). Same studies were also conducted using conventional Boolean site covariates, and without information about site belonging. The results from site GP classification provided high scores, balanced accuracy (BAC) was 98.39% for grey matter images. PD versus HS classification performed better when the WHARMPA were used to harmonize (BAC = 78.60%; AUC = 0.90) than when using the Boolean site information (BAC = 56.31%; AUC = 0.71) and without it (BAC = 57.22%; AUC = 0.73). The VBM analysis harmonized using WHARMPA provided larger and more statistically robust clusters in regions previously reported in PD than when the Boolean site covariates or no corrections were added to the model. In conclusion, WHARMPA might encode global site‐effects quantitatively and allow the harmonization of data. This method is user‐friendly and provides a powerful solution, without complex implementations, to clean the analyses by removing variability associated with the differences between sites. John Wiley & Sons, Inc. 2022-03-19 /pmc/articles/PMC9188966/ /pubmed/35305545 http://dx.doi.org/10.1002/hbm.25838 Text en © 2022 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
spellingShingle Research Articles
C. Monte‐Rubio, Gemma
Segura, Barbara
P. Strafella, Antonio
van Eimeren, Thilo
Ibarretxe‐Bilbao, Naroa
Diez‐Cirarda, Maria
Eggers, Carsten
Lucas‐Jiménez, Olaia
Ojeda, Natalia
Peña, Javier
Ruppert, Marina C.
Sala‐Llonch, Roser
Theis, Hendrik
Uribe, Carme
Junque, Carme
Parameters from site classification to harmonize MRI clinical studies: Application to a multi‐site Parkinson's disease dataset
title Parameters from site classification to harmonize MRI clinical studies: Application to a multi‐site Parkinson's disease dataset
title_full Parameters from site classification to harmonize MRI clinical studies: Application to a multi‐site Parkinson's disease dataset
title_fullStr Parameters from site classification to harmonize MRI clinical studies: Application to a multi‐site Parkinson's disease dataset
title_full_unstemmed Parameters from site classification to harmonize MRI clinical studies: Application to a multi‐site Parkinson's disease dataset
title_short Parameters from site classification to harmonize MRI clinical studies: Application to a multi‐site Parkinson's disease dataset
title_sort parameters from site classification to harmonize mri clinical studies: application to a multi‐site parkinson's disease dataset
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9188966/
https://www.ncbi.nlm.nih.gov/pubmed/35305545
http://dx.doi.org/10.1002/hbm.25838
work_keys_str_mv AT cmonterubiogemma parametersfromsiteclassificationtoharmonizemriclinicalstudiesapplicationtoamultisiteparkinsonsdiseasedataset
AT segurabarbara parametersfromsiteclassificationtoharmonizemriclinicalstudiesapplicationtoamultisiteparkinsonsdiseasedataset
AT pstrafellaantonio parametersfromsiteclassificationtoharmonizemriclinicalstudiesapplicationtoamultisiteparkinsonsdiseasedataset
AT vaneimerenthilo parametersfromsiteclassificationtoharmonizemriclinicalstudiesapplicationtoamultisiteparkinsonsdiseasedataset
AT ibarretxebilbaonaroa parametersfromsiteclassificationtoharmonizemriclinicalstudiesapplicationtoamultisiteparkinsonsdiseasedataset
AT diezcirardamaria parametersfromsiteclassificationtoharmonizemriclinicalstudiesapplicationtoamultisiteparkinsonsdiseasedataset
AT eggerscarsten parametersfromsiteclassificationtoharmonizemriclinicalstudiesapplicationtoamultisiteparkinsonsdiseasedataset
AT lucasjimenezolaia parametersfromsiteclassificationtoharmonizemriclinicalstudiesapplicationtoamultisiteparkinsonsdiseasedataset
AT ojedanatalia parametersfromsiteclassificationtoharmonizemriclinicalstudiesapplicationtoamultisiteparkinsonsdiseasedataset
AT penajavier parametersfromsiteclassificationtoharmonizemriclinicalstudiesapplicationtoamultisiteparkinsonsdiseasedataset
AT ruppertmarinac parametersfromsiteclassificationtoharmonizemriclinicalstudiesapplicationtoamultisiteparkinsonsdiseasedataset
AT salallonchroser parametersfromsiteclassificationtoharmonizemriclinicalstudiesapplicationtoamultisiteparkinsonsdiseasedataset
AT theishendrik parametersfromsiteclassificationtoharmonizemriclinicalstudiesapplicationtoamultisiteparkinsonsdiseasedataset
AT uribecarme parametersfromsiteclassificationtoharmonizemriclinicalstudiesapplicationtoamultisiteparkinsonsdiseasedataset
AT junquecarme parametersfromsiteclassificationtoharmonizemriclinicalstudiesapplicationtoamultisiteparkinsonsdiseasedataset