Cargando…
Parameters from site classification to harmonize MRI clinical studies: Application to a multi‐site Parkinson's disease dataset
Multi‐site MRI datasets are crucial for big data research. However, neuroimaging studies must face the batch effect. Here, we propose an approach that uses the predictive probabilities provided by Gaussian processes (GPs) to harmonize clinical‐based studies. A multi‐site dataset of 216 Parkinson...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9188966/ https://www.ncbi.nlm.nih.gov/pubmed/35305545 http://dx.doi.org/10.1002/hbm.25838 |
_version_ | 1784725490538381312 |
---|---|
author | C. Monte‐Rubio, Gemma Segura, Barbara P. Strafella, Antonio van Eimeren, Thilo Ibarretxe‐Bilbao, Naroa Diez‐Cirarda, Maria Eggers, Carsten Lucas‐Jiménez, Olaia Ojeda, Natalia Peña, Javier Ruppert, Marina C. Sala‐Llonch, Roser Theis, Hendrik Uribe, Carme Junque, Carme |
author_facet | C. Monte‐Rubio, Gemma Segura, Barbara P. Strafella, Antonio van Eimeren, Thilo Ibarretxe‐Bilbao, Naroa Diez‐Cirarda, Maria Eggers, Carsten Lucas‐Jiménez, Olaia Ojeda, Natalia Peña, Javier Ruppert, Marina C. Sala‐Llonch, Roser Theis, Hendrik Uribe, Carme Junque, Carme |
author_sort | C. Monte‐Rubio, Gemma |
collection | PubMed |
description | Multi‐site MRI datasets are crucial for big data research. However, neuroimaging studies must face the batch effect. Here, we propose an approach that uses the predictive probabilities provided by Gaussian processes (GPs) to harmonize clinical‐based studies. A multi‐site dataset of 216 Parkinson's disease (PD) patients and 87 healthy subjects (HS) was used. We performed a site GP classification using MRI data. The outcomes estimated from this classification, redefined like Weighted HARMonization PArameters (WHARMPA), were used as regressors in two different clinical studies: A PD versus HS machine learning classification using GP, and a VBM comparison (FWE‐p < .05, k = 100). Same studies were also conducted using conventional Boolean site covariates, and without information about site belonging. The results from site GP classification provided high scores, balanced accuracy (BAC) was 98.39% for grey matter images. PD versus HS classification performed better when the WHARMPA were used to harmonize (BAC = 78.60%; AUC = 0.90) than when using the Boolean site information (BAC = 56.31%; AUC = 0.71) and without it (BAC = 57.22%; AUC = 0.73). The VBM analysis harmonized using WHARMPA provided larger and more statistically robust clusters in regions previously reported in PD than when the Boolean site covariates or no corrections were added to the model. In conclusion, WHARMPA might encode global site‐effects quantitatively and allow the harmonization of data. This method is user‐friendly and provides a powerful solution, without complex implementations, to clean the analyses by removing variability associated with the differences between sites. |
format | Online Article Text |
id | pubmed-9188966 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley & Sons, Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-91889662022-06-15 Parameters from site classification to harmonize MRI clinical studies: Application to a multi‐site Parkinson's disease dataset C. Monte‐Rubio, Gemma Segura, Barbara P. Strafella, Antonio van Eimeren, Thilo Ibarretxe‐Bilbao, Naroa Diez‐Cirarda, Maria Eggers, Carsten Lucas‐Jiménez, Olaia Ojeda, Natalia Peña, Javier Ruppert, Marina C. Sala‐Llonch, Roser Theis, Hendrik Uribe, Carme Junque, Carme Hum Brain Mapp Research Articles Multi‐site MRI datasets are crucial for big data research. However, neuroimaging studies must face the batch effect. Here, we propose an approach that uses the predictive probabilities provided by Gaussian processes (GPs) to harmonize clinical‐based studies. A multi‐site dataset of 216 Parkinson's disease (PD) patients and 87 healthy subjects (HS) was used. We performed a site GP classification using MRI data. The outcomes estimated from this classification, redefined like Weighted HARMonization PArameters (WHARMPA), were used as regressors in two different clinical studies: A PD versus HS machine learning classification using GP, and a VBM comparison (FWE‐p < .05, k = 100). Same studies were also conducted using conventional Boolean site covariates, and without information about site belonging. The results from site GP classification provided high scores, balanced accuracy (BAC) was 98.39% for grey matter images. PD versus HS classification performed better when the WHARMPA were used to harmonize (BAC = 78.60%; AUC = 0.90) than when using the Boolean site information (BAC = 56.31%; AUC = 0.71) and without it (BAC = 57.22%; AUC = 0.73). The VBM analysis harmonized using WHARMPA provided larger and more statistically robust clusters in regions previously reported in PD than when the Boolean site covariates or no corrections were added to the model. In conclusion, WHARMPA might encode global site‐effects quantitatively and allow the harmonization of data. This method is user‐friendly and provides a powerful solution, without complex implementations, to clean the analyses by removing variability associated with the differences between sites. John Wiley & Sons, Inc. 2022-03-19 /pmc/articles/PMC9188966/ /pubmed/35305545 http://dx.doi.org/10.1002/hbm.25838 Text en © 2022 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Research Articles C. Monte‐Rubio, Gemma Segura, Barbara P. Strafella, Antonio van Eimeren, Thilo Ibarretxe‐Bilbao, Naroa Diez‐Cirarda, Maria Eggers, Carsten Lucas‐Jiménez, Olaia Ojeda, Natalia Peña, Javier Ruppert, Marina C. Sala‐Llonch, Roser Theis, Hendrik Uribe, Carme Junque, Carme Parameters from site classification to harmonize MRI clinical studies: Application to a multi‐site Parkinson's disease dataset |
title | Parameters from site classification to harmonize MRI clinical studies: Application to a multi‐site Parkinson's disease dataset |
title_full | Parameters from site classification to harmonize MRI clinical studies: Application to a multi‐site Parkinson's disease dataset |
title_fullStr | Parameters from site classification to harmonize MRI clinical studies: Application to a multi‐site Parkinson's disease dataset |
title_full_unstemmed | Parameters from site classification to harmonize MRI clinical studies: Application to a multi‐site Parkinson's disease dataset |
title_short | Parameters from site classification to harmonize MRI clinical studies: Application to a multi‐site Parkinson's disease dataset |
title_sort | parameters from site classification to harmonize mri clinical studies: application to a multi‐site parkinson's disease dataset |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9188966/ https://www.ncbi.nlm.nih.gov/pubmed/35305545 http://dx.doi.org/10.1002/hbm.25838 |
work_keys_str_mv | AT cmonterubiogemma parametersfromsiteclassificationtoharmonizemriclinicalstudiesapplicationtoamultisiteparkinsonsdiseasedataset AT segurabarbara parametersfromsiteclassificationtoharmonizemriclinicalstudiesapplicationtoamultisiteparkinsonsdiseasedataset AT pstrafellaantonio parametersfromsiteclassificationtoharmonizemriclinicalstudiesapplicationtoamultisiteparkinsonsdiseasedataset AT vaneimerenthilo parametersfromsiteclassificationtoharmonizemriclinicalstudiesapplicationtoamultisiteparkinsonsdiseasedataset AT ibarretxebilbaonaroa parametersfromsiteclassificationtoharmonizemriclinicalstudiesapplicationtoamultisiteparkinsonsdiseasedataset AT diezcirardamaria parametersfromsiteclassificationtoharmonizemriclinicalstudiesapplicationtoamultisiteparkinsonsdiseasedataset AT eggerscarsten parametersfromsiteclassificationtoharmonizemriclinicalstudiesapplicationtoamultisiteparkinsonsdiseasedataset AT lucasjimenezolaia parametersfromsiteclassificationtoharmonizemriclinicalstudiesapplicationtoamultisiteparkinsonsdiseasedataset AT ojedanatalia parametersfromsiteclassificationtoharmonizemriclinicalstudiesapplicationtoamultisiteparkinsonsdiseasedataset AT penajavier parametersfromsiteclassificationtoharmonizemriclinicalstudiesapplicationtoamultisiteparkinsonsdiseasedataset AT ruppertmarinac parametersfromsiteclassificationtoharmonizemriclinicalstudiesapplicationtoamultisiteparkinsonsdiseasedataset AT salallonchroser parametersfromsiteclassificationtoharmonizemriclinicalstudiesapplicationtoamultisiteparkinsonsdiseasedataset AT theishendrik parametersfromsiteclassificationtoharmonizemriclinicalstudiesapplicationtoamultisiteparkinsonsdiseasedataset AT uribecarme parametersfromsiteclassificationtoharmonizemriclinicalstudiesapplicationtoamultisiteparkinsonsdiseasedataset AT junquecarme parametersfromsiteclassificationtoharmonizemriclinicalstudiesapplicationtoamultisiteparkinsonsdiseasedataset |