Cargando…
Texture analysis based on PI-RADS 4/5-scored magnetic resonance images combined with machine learning to distinguish benign lesions from prostate cancer
BACKGROUND: The global morbidity and mortality of prostate cancer (PCa) increase sharply every year. Early diagnosis is essential; it determines survival and outcome. So, this study extracted the texture features of apparent diffusion coefficient images in multiparametric magnetic resonance imaging...
Autores principales: | Ma, Lu, Zhou, Qi, Yin, Huming, Ang, Xiaojie, Li, Yu, Xie, Gansheng, Li, Gang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9189174/ https://www.ncbi.nlm.nih.gov/pubmed/35706813 http://dx.doi.org/10.21037/tcr-21-2271 |
Ejemplares similares
-
Magnetic Resonance Image Compilation Was Used in Conjunction with Prostate PI-RADS v2.1 Score Has Diagnostic Relevance for Benign and Malignant Prostate Lesions
por: Xu, Wenjuan, et al.
Publicado: (2022) -
Retracted: Magnetic Resonance Image Compilation Was Used in Conjunction with Prostate PI-RADS v2.1 Score Has Diagnostic Relevance for Benign and Malignant Prostate Lesions
por: Methods in Medicine, Computational and Mathematical
Publicado: (2023) -
Value of Intra-Perinodular Textural Transition Features from MRI in Distinguishing Between Benign and Malignant Testicular Lesions
por: Zhang, Peipei, et al.
Publicado: (2021) -
Machine Learning and Clinical-Radiological Characteristics for the Classification of Prostate Cancer in PI-RADS 3 Lesions
por: Gravina, Michela, et al.
Publicado: (2022) -
Improving the understanding of PI-RADS in practice: characters of PI-RADS 4 and 5 lesions with negative biopsy
por: Wang, Yu-Hao, et al.
Publicado: (2023)