Cargando…
EpiTopics: A dynamic machine learning model to predict and inform non-pharmacological public health interventions from global news reports
Non-pharmacological interventions (NPIs) are important for controlling infectious diseases such as COVID-19, but their implementation is currently monitored in an ad hoc manner. To address this issue, we present a three-stage machine learning framework called EpiTopics to facilitate the surveillance...
Autores principales: | Wen, Zhi, Zhang, Jingfu, Powell, Guido, Chafi, Imane, Buckeridge, David L., Li, Yue |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9189439/ https://www.ncbi.nlm.nih.gov/pubmed/35712009 http://dx.doi.org/10.1016/j.xpro.2022.101463 |
Ejemplares similares
-
Inferring global-scale temporal latent topics from news reports to predict public health interventions for COVID-19
por: Wen, Zhi, et al.
Publicado: (2022) -
ISOTOPE: ISOform-guided prediction of epiTOPEs in cancer
por: Trincado, Juan L., et al.
Publicado: (2021) -
BioCaster in 2021: automatic disease outbreaks detection from global news media
por: Meng, Zaiqiao, et al.
Publicado: (2022) -
EpiJen: a server for multistep T cell epitope prediction
por: Doytchinova, Irini A, et al.
Publicado: (2006) -
The public and legislative impact of hyperconcentrated topic news
por: Sheshadri, Karthik, et al.
Publicado: (2019)