Cargando…
Development and evaluation of a deep learning model to improve the usability of polyp detection systems during interventions
BACKGROUND: The efficiency of artificial intelligence as computer‐aided detection (CADe) systems for colorectal polyps has been demonstrated in several randomized trials. However, CADe systems generate many distracting detections, especially during interventions such as polypectomies. Those distract...
Autores principales: | Brand, Markus, Troya, Joel, Krenzer, Adrian, Saßmannshausen, Zita, Zoller, Wolfram G., Meining, Alexander, Lux, Thomas J., Hann, Alexander |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9189459/ https://www.ncbi.nlm.nih.gov/pubmed/35511456 http://dx.doi.org/10.1002/ueg2.12235 |
Ejemplares similares
-
Pilot study of a new freely available computer-aided polyp detection system in clinical practice
por: Lux, Thomas J., et al.
Publicado: (2022) -
Artificial intelligence-based polyp size measurement in gastrointestinal endoscopy using the auxiliary waterjet as a reference
por: Sudarevic, Boban, et al.
Publicado: (2023) -
Assessment of the yearly carbon emission of a gastrointestinal endoscopy unit
por: Henniger, Dorothea, et al.
Publicado: (2023) -
Current status and limitations of artificial intelligence in colonoscopy
por: Hann, Alexander, et al.
Publicado: (2021) -
Automated classification of polyps using deep learning architectures and few-shot learning
por: Krenzer, Adrian, et al.
Publicado: (2023)