Cargando…

Ionic Combisomes: A New Class of Biomimetic Vesicles to Fuse with Life

The construction of biomembranes that faithfully capture the properties and dynamic functions of cell membranes remains a challenge in the development of synthetic cells and their application. Here a new concept for synthetic cell membranes based on the self‐assembly of amphiphilic comb polymers int...

Descripción completa

Detalles Bibliográficos
Autores principales: Wagner, Anna M., Quandt, Jonas, Söder, Dominik, Garay‐Sarmiento, Manuela, Joseph, Anton, Petrovskii, Vladislav S., Witzdam, Lena, Hammoor, Thomas, Steitz, Philipp, Haraszti, Tamás, Potemkin, Igor I., Kostina, Nina Yu., Herrmann, Andreas, Rodriguez‐Emmenegger, Cesar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9189634/
https://www.ncbi.nlm.nih.gov/pubmed/35393756
http://dx.doi.org/10.1002/advs.202200617
_version_ 1784725629562781696
author Wagner, Anna M.
Quandt, Jonas
Söder, Dominik
Garay‐Sarmiento, Manuela
Joseph, Anton
Petrovskii, Vladislav S.
Witzdam, Lena
Hammoor, Thomas
Steitz, Philipp
Haraszti, Tamás
Potemkin, Igor I.
Kostina, Nina Yu.
Herrmann, Andreas
Rodriguez‐Emmenegger, Cesar
author_facet Wagner, Anna M.
Quandt, Jonas
Söder, Dominik
Garay‐Sarmiento, Manuela
Joseph, Anton
Petrovskii, Vladislav S.
Witzdam, Lena
Hammoor, Thomas
Steitz, Philipp
Haraszti, Tamás
Potemkin, Igor I.
Kostina, Nina Yu.
Herrmann, Andreas
Rodriguez‐Emmenegger, Cesar
author_sort Wagner, Anna M.
collection PubMed
description The construction of biomembranes that faithfully capture the properties and dynamic functions of cell membranes remains a challenge in the development of synthetic cells and their application. Here a new concept for synthetic cell membranes based on the self‐assembly of amphiphilic comb polymers into vesicles, termed ionic combisomes (i‐combisomes) is introduced. These combs consist of a polyzwitterionic backbone to which hydrophobic tails are linked by electrostatic interactions. Using a range of microscopies and molecular simulations, the self‐assembly of a library of combs in water is screened. It is discovered that the hydrophobic tails form the membrane's core and force the backbone into a rod conformation with nematic‐like ordering confined to the interface with water. This particular organization resulted in membranes that combine the stability of classic polymersomes with the biomimetic thickness, flexibility, and lateral mobility of liposomes. Such unparalleled matching of biophysical properties and the ability to locally reconfigure the molecular topology of its constituents enable the harboring of functional components of natural membranes and fusion with living bacteria to “hijack” their periphery. This provides an almost inexhaustible palette to design the chemical and biological makeup of the i‐combisomes membrane resulting in a powerful platform for fundamental studies and technological applications.
format Online
Article
Text
id pubmed-9189634
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-91896342022-06-16 Ionic Combisomes: A New Class of Biomimetic Vesicles to Fuse with Life Wagner, Anna M. Quandt, Jonas Söder, Dominik Garay‐Sarmiento, Manuela Joseph, Anton Petrovskii, Vladislav S. Witzdam, Lena Hammoor, Thomas Steitz, Philipp Haraszti, Tamás Potemkin, Igor I. Kostina, Nina Yu. Herrmann, Andreas Rodriguez‐Emmenegger, Cesar Adv Sci (Weinh) Research Articles The construction of biomembranes that faithfully capture the properties and dynamic functions of cell membranes remains a challenge in the development of synthetic cells and their application. Here a new concept for synthetic cell membranes based on the self‐assembly of amphiphilic comb polymers into vesicles, termed ionic combisomes (i‐combisomes) is introduced. These combs consist of a polyzwitterionic backbone to which hydrophobic tails are linked by electrostatic interactions. Using a range of microscopies and molecular simulations, the self‐assembly of a library of combs in water is screened. It is discovered that the hydrophobic tails form the membrane's core and force the backbone into a rod conformation with nematic‐like ordering confined to the interface with water. This particular organization resulted in membranes that combine the stability of classic polymersomes with the biomimetic thickness, flexibility, and lateral mobility of liposomes. Such unparalleled matching of biophysical properties and the ability to locally reconfigure the molecular topology of its constituents enable the harboring of functional components of natural membranes and fusion with living bacteria to “hijack” their periphery. This provides an almost inexhaustible palette to design the chemical and biological makeup of the i‐combisomes membrane resulting in a powerful platform for fundamental studies and technological applications. John Wiley and Sons Inc. 2022-04-07 /pmc/articles/PMC9189634/ /pubmed/35393756 http://dx.doi.org/10.1002/advs.202200617 Text en © 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Wagner, Anna M.
Quandt, Jonas
Söder, Dominik
Garay‐Sarmiento, Manuela
Joseph, Anton
Petrovskii, Vladislav S.
Witzdam, Lena
Hammoor, Thomas
Steitz, Philipp
Haraszti, Tamás
Potemkin, Igor I.
Kostina, Nina Yu.
Herrmann, Andreas
Rodriguez‐Emmenegger, Cesar
Ionic Combisomes: A New Class of Biomimetic Vesicles to Fuse with Life
title Ionic Combisomes: A New Class of Biomimetic Vesicles to Fuse with Life
title_full Ionic Combisomes: A New Class of Biomimetic Vesicles to Fuse with Life
title_fullStr Ionic Combisomes: A New Class of Biomimetic Vesicles to Fuse with Life
title_full_unstemmed Ionic Combisomes: A New Class of Biomimetic Vesicles to Fuse with Life
title_short Ionic Combisomes: A New Class of Biomimetic Vesicles to Fuse with Life
title_sort ionic combisomes: a new class of biomimetic vesicles to fuse with life
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9189634/
https://www.ncbi.nlm.nih.gov/pubmed/35393756
http://dx.doi.org/10.1002/advs.202200617
work_keys_str_mv AT wagnerannam ioniccombisomesanewclassofbiomimeticvesiclestofusewithlife
AT quandtjonas ioniccombisomesanewclassofbiomimeticvesiclestofusewithlife
AT soderdominik ioniccombisomesanewclassofbiomimeticvesiclestofusewithlife
AT garaysarmientomanuela ioniccombisomesanewclassofbiomimeticvesiclestofusewithlife
AT josephanton ioniccombisomesanewclassofbiomimeticvesiclestofusewithlife
AT petrovskiivladislavs ioniccombisomesanewclassofbiomimeticvesiclestofusewithlife
AT witzdamlena ioniccombisomesanewclassofbiomimeticvesiclestofusewithlife
AT hammoorthomas ioniccombisomesanewclassofbiomimeticvesiclestofusewithlife
AT steitzphilipp ioniccombisomesanewclassofbiomimeticvesiclestofusewithlife
AT harasztitamas ioniccombisomesanewclassofbiomimeticvesiclestofusewithlife
AT potemkinigori ioniccombisomesanewclassofbiomimeticvesiclestofusewithlife
AT kostinaninayu ioniccombisomesanewclassofbiomimeticvesiclestofusewithlife
AT herrmannandreas ioniccombisomesanewclassofbiomimeticvesiclestofusewithlife
AT rodriguezemmeneggercesar ioniccombisomesanewclassofbiomimeticvesiclestofusewithlife