Cargando…
Ionic Combisomes: A New Class of Biomimetic Vesicles to Fuse with Life
The construction of biomembranes that faithfully capture the properties and dynamic functions of cell membranes remains a challenge in the development of synthetic cells and their application. Here a new concept for synthetic cell membranes based on the self‐assembly of amphiphilic comb polymers int...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9189634/ https://www.ncbi.nlm.nih.gov/pubmed/35393756 http://dx.doi.org/10.1002/advs.202200617 |
_version_ | 1784725629562781696 |
---|---|
author | Wagner, Anna M. Quandt, Jonas Söder, Dominik Garay‐Sarmiento, Manuela Joseph, Anton Petrovskii, Vladislav S. Witzdam, Lena Hammoor, Thomas Steitz, Philipp Haraszti, Tamás Potemkin, Igor I. Kostina, Nina Yu. Herrmann, Andreas Rodriguez‐Emmenegger, Cesar |
author_facet | Wagner, Anna M. Quandt, Jonas Söder, Dominik Garay‐Sarmiento, Manuela Joseph, Anton Petrovskii, Vladislav S. Witzdam, Lena Hammoor, Thomas Steitz, Philipp Haraszti, Tamás Potemkin, Igor I. Kostina, Nina Yu. Herrmann, Andreas Rodriguez‐Emmenegger, Cesar |
author_sort | Wagner, Anna M. |
collection | PubMed |
description | The construction of biomembranes that faithfully capture the properties and dynamic functions of cell membranes remains a challenge in the development of synthetic cells and their application. Here a new concept for synthetic cell membranes based on the self‐assembly of amphiphilic comb polymers into vesicles, termed ionic combisomes (i‐combisomes) is introduced. These combs consist of a polyzwitterionic backbone to which hydrophobic tails are linked by electrostatic interactions. Using a range of microscopies and molecular simulations, the self‐assembly of a library of combs in water is screened. It is discovered that the hydrophobic tails form the membrane's core and force the backbone into a rod conformation with nematic‐like ordering confined to the interface with water. This particular organization resulted in membranes that combine the stability of classic polymersomes with the biomimetic thickness, flexibility, and lateral mobility of liposomes. Such unparalleled matching of biophysical properties and the ability to locally reconfigure the molecular topology of its constituents enable the harboring of functional components of natural membranes and fusion with living bacteria to “hijack” their periphery. This provides an almost inexhaustible palette to design the chemical and biological makeup of the i‐combisomes membrane resulting in a powerful platform for fundamental studies and technological applications. |
format | Online Article Text |
id | pubmed-9189634 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-91896342022-06-16 Ionic Combisomes: A New Class of Biomimetic Vesicles to Fuse with Life Wagner, Anna M. Quandt, Jonas Söder, Dominik Garay‐Sarmiento, Manuela Joseph, Anton Petrovskii, Vladislav S. Witzdam, Lena Hammoor, Thomas Steitz, Philipp Haraszti, Tamás Potemkin, Igor I. Kostina, Nina Yu. Herrmann, Andreas Rodriguez‐Emmenegger, Cesar Adv Sci (Weinh) Research Articles The construction of biomembranes that faithfully capture the properties and dynamic functions of cell membranes remains a challenge in the development of synthetic cells and their application. Here a new concept for synthetic cell membranes based on the self‐assembly of amphiphilic comb polymers into vesicles, termed ionic combisomes (i‐combisomes) is introduced. These combs consist of a polyzwitterionic backbone to which hydrophobic tails are linked by electrostatic interactions. Using a range of microscopies and molecular simulations, the self‐assembly of a library of combs in water is screened. It is discovered that the hydrophobic tails form the membrane's core and force the backbone into a rod conformation with nematic‐like ordering confined to the interface with water. This particular organization resulted in membranes that combine the stability of classic polymersomes with the biomimetic thickness, flexibility, and lateral mobility of liposomes. Such unparalleled matching of biophysical properties and the ability to locally reconfigure the molecular topology of its constituents enable the harboring of functional components of natural membranes and fusion with living bacteria to “hijack” their periphery. This provides an almost inexhaustible palette to design the chemical and biological makeup of the i‐combisomes membrane resulting in a powerful platform for fundamental studies and technological applications. John Wiley and Sons Inc. 2022-04-07 /pmc/articles/PMC9189634/ /pubmed/35393756 http://dx.doi.org/10.1002/advs.202200617 Text en © 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Wagner, Anna M. Quandt, Jonas Söder, Dominik Garay‐Sarmiento, Manuela Joseph, Anton Petrovskii, Vladislav S. Witzdam, Lena Hammoor, Thomas Steitz, Philipp Haraszti, Tamás Potemkin, Igor I. Kostina, Nina Yu. Herrmann, Andreas Rodriguez‐Emmenegger, Cesar Ionic Combisomes: A New Class of Biomimetic Vesicles to Fuse with Life |
title | Ionic Combisomes: A New Class of Biomimetic Vesicles to Fuse with Life |
title_full | Ionic Combisomes: A New Class of Biomimetic Vesicles to Fuse with Life |
title_fullStr | Ionic Combisomes: A New Class of Biomimetic Vesicles to Fuse with Life |
title_full_unstemmed | Ionic Combisomes: A New Class of Biomimetic Vesicles to Fuse with Life |
title_short | Ionic Combisomes: A New Class of Biomimetic Vesicles to Fuse with Life |
title_sort | ionic combisomes: a new class of biomimetic vesicles to fuse with life |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9189634/ https://www.ncbi.nlm.nih.gov/pubmed/35393756 http://dx.doi.org/10.1002/advs.202200617 |
work_keys_str_mv | AT wagnerannam ioniccombisomesanewclassofbiomimeticvesiclestofusewithlife AT quandtjonas ioniccombisomesanewclassofbiomimeticvesiclestofusewithlife AT soderdominik ioniccombisomesanewclassofbiomimeticvesiclestofusewithlife AT garaysarmientomanuela ioniccombisomesanewclassofbiomimeticvesiclestofusewithlife AT josephanton ioniccombisomesanewclassofbiomimeticvesiclestofusewithlife AT petrovskiivladislavs ioniccombisomesanewclassofbiomimeticvesiclestofusewithlife AT witzdamlena ioniccombisomesanewclassofbiomimeticvesiclestofusewithlife AT hammoorthomas ioniccombisomesanewclassofbiomimeticvesiclestofusewithlife AT steitzphilipp ioniccombisomesanewclassofbiomimeticvesiclestofusewithlife AT harasztitamas ioniccombisomesanewclassofbiomimeticvesiclestofusewithlife AT potemkinigori ioniccombisomesanewclassofbiomimeticvesiclestofusewithlife AT kostinaninayu ioniccombisomesanewclassofbiomimeticvesiclestofusewithlife AT herrmannandreas ioniccombisomesanewclassofbiomimeticvesiclestofusewithlife AT rodriguezemmeneggercesar ioniccombisomesanewclassofbiomimeticvesiclestofusewithlife |