Cargando…

Elucidating the Rate‐Limiting Processes in High‐Temperature Sodium‐Metal Chloride Batteries

Sodium‐metal chloride batteries are considered a sustainable and safe alternative to lithium‐ion batteries for large‐scale stationary electricity storage, but exhibit disadvantages in rate capability. Several studies identify metal‐ion migration through the metal chloride conversion layer on the pos...

Descripción completa

Detalles Bibliográficos
Autores principales: Landmann, Daniel, Svaluto‐Ferro, Enea, Heinz, Meike V. F., Schmutz, Patrik, Battaglia, Corsin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9189643/
https://www.ncbi.nlm.nih.gov/pubmed/35411652
http://dx.doi.org/10.1002/advs.202201019
Descripción
Sumario:Sodium‐metal chloride batteries are considered a sustainable and safe alternative to lithium‐ion batteries for large‐scale stationary electricity storage, but exhibit disadvantages in rate capability. Several studies identify metal‐ion migration through the metal chloride conversion layer on the positive electrode as the rate‐limiting step, limiting charge and discharge rates in sodium‐metal chloride batteries. Here the authors present electrochemical nickel and iron chlorination with planar model electrodes in molten sodium tetrachloroaluminate electrolyte at 300 °C. It is discovered that, instead of metal‐ion migration through the metal chloride conversion layer, it is metal‐ion diffusion in sodium tetrachloroaluminate which limits chlorination of both the nickel and iron electrodes. Upon charge, chlorination of the nickel electrode proceeds via uniform oxidation of nickel and the formation of NiCl(2) platelets on the surface of the electrode. In contrast, the oxidation of the iron electrodes proceeds via localized corrosion attacks, resulting in nonuniform iron oxidation and pulverization of the iron electrode. The transition from planar model electrodes to porous high‐capacity electrodes, where sodium‐ion migration along the tortuous path in the porous electrode can become rate limiting, is further discussed. These mechanistic insights are important for the design of competitive next‐generation sodium‐metal chloride batteries with improved rate performance.