Cargando…
Nonideality‐Aware Training for Accurate and Robust Low‐Power Memristive Neural Networks
Recent years have seen a rapid rise of artificial neural networks being employed in a number of cognitive tasks. The ever‐increasing computing requirements of these structures have contributed to a desire for novel technologies and paradigms, including memristor‐based hardware accelerators. Solution...
Autores principales: | Joksas, Dovydas, Wang, Erwei, Barmpatsalos, Nikolaos, Ng, Wing H., Kenyon, Anthony J., Constantinides, George A., Mehonic, Adnan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9189678/ https://www.ncbi.nlm.nih.gov/pubmed/35508766 http://dx.doi.org/10.1002/advs.202105784 |
Ejemplares similares
-
Simulation of Inference Accuracy Using Realistic RRAM Devices
por: Mehonic, Adnan, et al.
Publicado: (2019) -
Kinetic theory of nonideal gases and nonideal plasmas
por: Klimontovich, Yu L, et al.
Publicado: (2013) -
Committee machines—a universal method to deal with non-idealities in memristor-based neural networks
por: Joksas, D., et al.
Publicado: (2020) -
Nonideal heterojunctions for image sensors
por: Smyntyna, Valentyn
Publicado: (2018) -
Molecular thermodynamics of nonideal fluids
por: Lee, Lloyd L, et al.
Publicado: (2013)