Cargando…
Can Machine Learning from Real-World Data Support Drug Treatment Decisions? A Prediction Modeling Case for Direct Oral Anticoagulants
BACKGROUND: Decision making for the “best” treatment is particularly challenging in situations in which individual patient response to drugs can largely differ from average treatment effects. By estimating individual treatment effects (ITEs), we aimed to demonstrate how strokes, major bleeding event...
Autores principales: | Meid, Andreas D., Wirbka, Lucas, Groll, Andreas, Haefeli, Walter E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9189725/ https://www.ncbi.nlm.nih.gov/pubmed/34911402 http://dx.doi.org/10.1177/0272989X211064604 |
Ejemplares similares
-
A prediction model for nonpersistence or nonadherence to direct oral anticoagulants in hospitalized patients with atrial fibrillation
por: Wirbka, Lucas, et al.
Publicado: (2022) -
Estimated Thresholds of Minimum Necessary Adherence for Effective Treatment with Direct Oral Anticoagulants – A Retrospective Cohort Study in Health Insurance Claims Data
por: Wirbka, Lucas, et al.
Publicado: (2021) -
Using the Causal Inference Framework to Support Individualized Drug Treatment Decisions Based on Observational Healthcare Data
por: Meid, Andreas D, et al.
Publicado: (2020) -
A framework to build similarity-based cohorts for personalized treatment advice – a standardized, but flexible workflow with the R package SimBaCo
por: Wirbka, Lucas, et al.
Publicado: (2020) -
Disease-dependent variations in the timing and causes of readmissions in Germany: A claims data analysis for six different conditions
por: Ruff, Carmen, et al.
Publicado: (2021)