Cargando…
Determination of Soil Constituents Using Shifted Excitation Raman Difference Spectroscopy
Soil analysis to estimate soil fertility parameters is of great importance for precision agriculture but nowadays it still relies mainly on complex and time-consuming laboratory methods. Optical measurement techniques can provide a suitable alternative. Raman spectroscopy is of particular interest d...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9189730/ https://www.ncbi.nlm.nih.gov/pubmed/35138179 http://dx.doi.org/10.1177/00037028211064907 |
_version_ | 1784725652489895936 |
---|---|
author | Sowoidnich, Kay Vogel, Sebastian Maiwald, Martin Sumpf, Bernd |
author_facet | Sowoidnich, Kay Vogel, Sebastian Maiwald, Martin Sumpf, Bernd |
author_sort | Sowoidnich, Kay |
collection | PubMed |
description | Soil analysis to estimate soil fertility parameters is of great importance for precision agriculture but nowadays it still relies mainly on complex and time-consuming laboratory methods. Optical measurement techniques can provide a suitable alternative. Raman spectroscopy is of particular interest due to its ability to provide a molecular fingerprint of individual soil components. To overcome the major issue of strong fluorescence interference inherent to soil, we applied shifted excitation Raman difference spectroscopy (SERDS) using an in-house-developed dual-wavelength diode laser emitting at 785.2 and 784.6 nm. To account for the intrinsic heterogeneity of soil components at the millimeter scale, a raster scan with 100 individual measurement positions has been applied. Characteristic Raman signals of inorganic (quartz, feldspar, anatase, and calcite) and organic (amorphous carbon) constituents within the soil could be recovered from intense background interference. For the first time, the molecule-specific information derived by SERDS combined with partial least squares regression was demonstrated for the prediction of the soil organic matter content (coefficient of determination R(2) = 0.82 and root mean square error of cross validation RMSECV = 0.41%) as important soil fertility parameter within a set of 33 soil specimens collected from an agricultural field in northeast Germany. |
format | Online Article Text |
id | pubmed-9189730 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | SAGE Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-91897302022-06-14 Determination of Soil Constituents Using Shifted Excitation Raman Difference Spectroscopy Sowoidnich, Kay Vogel, Sebastian Maiwald, Martin Sumpf, Bernd Appl Spectrosc Submitted Papers Soil analysis to estimate soil fertility parameters is of great importance for precision agriculture but nowadays it still relies mainly on complex and time-consuming laboratory methods. Optical measurement techniques can provide a suitable alternative. Raman spectroscopy is of particular interest due to its ability to provide a molecular fingerprint of individual soil components. To overcome the major issue of strong fluorescence interference inherent to soil, we applied shifted excitation Raman difference spectroscopy (SERDS) using an in-house-developed dual-wavelength diode laser emitting at 785.2 and 784.6 nm. To account for the intrinsic heterogeneity of soil components at the millimeter scale, a raster scan with 100 individual measurement positions has been applied. Characteristic Raman signals of inorganic (quartz, feldspar, anatase, and calcite) and organic (amorphous carbon) constituents within the soil could be recovered from intense background interference. For the first time, the molecule-specific information derived by SERDS combined with partial least squares regression was demonstrated for the prediction of the soil organic matter content (coefficient of determination R(2) = 0.82 and root mean square error of cross validation RMSECV = 0.41%) as important soil fertility parameter within a set of 33 soil specimens collected from an agricultural field in northeast Germany. SAGE Publications 2022-02-09 2022-06 /pmc/articles/PMC9189730/ /pubmed/35138179 http://dx.doi.org/10.1177/00037028211064907 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by-nc/4.0/This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage). |
spellingShingle | Submitted Papers Sowoidnich, Kay Vogel, Sebastian Maiwald, Martin Sumpf, Bernd Determination of Soil Constituents Using Shifted Excitation Raman Difference Spectroscopy |
title | Determination of Soil Constituents Using Shifted Excitation Raman
Difference Spectroscopy |
title_full | Determination of Soil Constituents Using Shifted Excitation Raman
Difference Spectroscopy |
title_fullStr | Determination of Soil Constituents Using Shifted Excitation Raman
Difference Spectroscopy |
title_full_unstemmed | Determination of Soil Constituents Using Shifted Excitation Raman
Difference Spectroscopy |
title_short | Determination of Soil Constituents Using Shifted Excitation Raman
Difference Spectroscopy |
title_sort | determination of soil constituents using shifted excitation raman
difference spectroscopy |
topic | Submitted Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9189730/ https://www.ncbi.nlm.nih.gov/pubmed/35138179 http://dx.doi.org/10.1177/00037028211064907 |
work_keys_str_mv | AT sowoidnichkay determinationofsoilconstituentsusingshiftedexcitationramandifferencespectroscopy AT vogelsebastian determinationofsoilconstituentsusingshiftedexcitationramandifferencespectroscopy AT maiwaldmartin determinationofsoilconstituentsusingshiftedexcitationramandifferencespectroscopy AT sumpfbernd determinationofsoilconstituentsusingshiftedexcitationramandifferencespectroscopy |