Cargando…
Metabolic detection of malignant brain gliomas through plasma lipidomic analysis and support vector machine-based machine learning
BACKGROUND: Most malignant brain gliomas (MBGs) are associated with dismal outcomes, mainly due to their late diagnosis. Current diagnostic methods for MBGs are based on imaging and histological examination, which limits their early detection. Here, we aimed to identify reliable plasma lipid biomark...
Autores principales: | Zhou, Juntuo, Ji, Nan, Wang, Guangxi, Zhang, Yang, Song, Huajie, Yuan, Yuyao, Yang, Chunyuan, Jin, Yan, Zhang, Zhe, Zhang, Liwei, Yin, Yuxin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9189781/ https://www.ncbi.nlm.nih.gov/pubmed/35687958 http://dx.doi.org/10.1016/j.ebiom.2022.104097 |
Ejemplares similares
-
Metabolic detection and systems analyses of pancreatic ductal adenocarcinoma through machine learning, lipidomics, and multi-omics
por: Wang, Guangxi, et al.
Publicado: (2021) -
Plasma Metabolomics and Lipidomics Reveal Perturbed Metabolites in Different Disease Stages of Chronic Obstructive Pulmonary Disease
por: Zhou, Juntuo, et al.
Publicado: (2020) -
Diagnostic Value of Plasma MicroRNAs for Lung Cancer Using Support Vector Machine Model
por: Wang, Wei, et al.
Publicado: (2019) -
Pulmonary Nodule Recognition Based on Multiple Kernel Learning Support Vector Machine-PSO
por: Li, Yang, et al.
Publicado: (2018) -
Support Vector Machines
por: Deng, Naiyang
Publicado: (2012)