Cargando…
Rapid prediction of protein natural frequencies using graph neural networks
Natural vibrational frequencies of proteins help to correlate functional shifts with sequence or geometric variations that lead to negligible changes in protein structures, such as point mutations related to disease lethality or medication effectiveness. Normal mode analysis is a well-known approach...
Autores principales: | Guo, Kai, Buehler, Markus J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
RSC
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9189858/ https://www.ncbi.nlm.nih.gov/pubmed/35769204 http://dx.doi.org/10.1039/d1dd00007a |
Ejemplares similares
-
Machine learning model for fast prediction of the natural frequencies of protein molecules
por: Qin, Zhao, et al.
Publicado: (2020) -
Prediction of atomic stress fields using cycle-consistent adversarial neural networks based on unpaired and unmatched sparse datasets
por: Buehler, Markus J.
Publicado: (2022) -
Predicting chemical shifts with graph neural networks
por: Yang, Ziyue, et al.
Publicado: (2021) -
Drug–target affinity prediction using graph neural network and contact maps
por: Jiang, Mingjian, et al.
Publicado: (2020) -
Graph neural network based coarse-grained mapping prediction
por: Li, Zhiheng, et al.
Publicado: (2020)