Cargando…

NewtonNet: a Newtonian message passing network for deep learning of interatomic potentials and forces

We report a new deep learning message passing network that takes inspiration from Newton's equations of motion to learn interatomic potentials and forces. With the advantage of directional information from trainable force vectors, and physics-infused operators that are inspired by Newtonian phy...

Descripción completa

Detalles Bibliográficos
Autores principales: Haghighatlari, Mojtaba, Li, Jie, Guan, Xingyi, Zhang, Oufan, Das, Akshaya, Stein, Christopher J., Heidar-Zadeh, Farnaz, Liu, Meili, Head-Gordon, Martin, Bertels, Luke, Hao, Hongxia, Leven, Itai, Head-Gordon, Teresa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: RSC 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9189860/
https://www.ncbi.nlm.nih.gov/pubmed/35769203
http://dx.doi.org/10.1039/d2dd00008c
_version_ 1784725680155525120
author Haghighatlari, Mojtaba
Li, Jie
Guan, Xingyi
Zhang, Oufan
Das, Akshaya
Stein, Christopher J.
Heidar-Zadeh, Farnaz
Liu, Meili
Head-Gordon, Martin
Bertels, Luke
Hao, Hongxia
Leven, Itai
Head-Gordon, Teresa
author_facet Haghighatlari, Mojtaba
Li, Jie
Guan, Xingyi
Zhang, Oufan
Das, Akshaya
Stein, Christopher J.
Heidar-Zadeh, Farnaz
Liu, Meili
Head-Gordon, Martin
Bertels, Luke
Hao, Hongxia
Leven, Itai
Head-Gordon, Teresa
author_sort Haghighatlari, Mojtaba
collection PubMed
description We report a new deep learning message passing network that takes inspiration from Newton's equations of motion to learn interatomic potentials and forces. With the advantage of directional information from trainable force vectors, and physics-infused operators that are inspired by Newtonian physics, the entire model remains rotationally equivariant, and many-body interactions are inferred by more interpretable physical features. We test NewtonNet on the prediction of several reactive and non-reactive high quality ab initio data sets including single small molecules, a large set of chemically diverse molecules, and methane and hydrogen combustion reactions, achieving state-of-the-art test performance on energies and forces with far greater data and computational efficiency than other deep learning models.
format Online
Article
Text
id pubmed-9189860
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher RSC
record_format MEDLINE/PubMed
spelling pubmed-91898602022-06-27 NewtonNet: a Newtonian message passing network for deep learning of interatomic potentials and forces Haghighatlari, Mojtaba Li, Jie Guan, Xingyi Zhang, Oufan Das, Akshaya Stein, Christopher J. Heidar-Zadeh, Farnaz Liu, Meili Head-Gordon, Martin Bertels, Luke Hao, Hongxia Leven, Itai Head-Gordon, Teresa Digit Discov Chemistry We report a new deep learning message passing network that takes inspiration from Newton's equations of motion to learn interatomic potentials and forces. With the advantage of directional information from trainable force vectors, and physics-infused operators that are inspired by Newtonian physics, the entire model remains rotationally equivariant, and many-body interactions are inferred by more interpretable physical features. We test NewtonNet on the prediction of several reactive and non-reactive high quality ab initio data sets including single small molecules, a large set of chemically diverse molecules, and methane and hydrogen combustion reactions, achieving state-of-the-art test performance on energies and forces with far greater data and computational efficiency than other deep learning models. RSC 2022-04-27 /pmc/articles/PMC9189860/ /pubmed/35769203 http://dx.doi.org/10.1039/d2dd00008c Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/
spellingShingle Chemistry
Haghighatlari, Mojtaba
Li, Jie
Guan, Xingyi
Zhang, Oufan
Das, Akshaya
Stein, Christopher J.
Heidar-Zadeh, Farnaz
Liu, Meili
Head-Gordon, Martin
Bertels, Luke
Hao, Hongxia
Leven, Itai
Head-Gordon, Teresa
NewtonNet: a Newtonian message passing network for deep learning of interatomic potentials and forces
title NewtonNet: a Newtonian message passing network for deep learning of interatomic potentials and forces
title_full NewtonNet: a Newtonian message passing network for deep learning of interatomic potentials and forces
title_fullStr NewtonNet: a Newtonian message passing network for deep learning of interatomic potentials and forces
title_full_unstemmed NewtonNet: a Newtonian message passing network for deep learning of interatomic potentials and forces
title_short NewtonNet: a Newtonian message passing network for deep learning of interatomic potentials and forces
title_sort newtonnet: a newtonian message passing network for deep learning of interatomic potentials and forces
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9189860/
https://www.ncbi.nlm.nih.gov/pubmed/35769203
http://dx.doi.org/10.1039/d2dd00008c
work_keys_str_mv AT haghighatlarimojtaba newtonnetanewtonianmessagepassingnetworkfordeeplearningofinteratomicpotentialsandforces
AT lijie newtonnetanewtonianmessagepassingnetworkfordeeplearningofinteratomicpotentialsandforces
AT guanxingyi newtonnetanewtonianmessagepassingnetworkfordeeplearningofinteratomicpotentialsandforces
AT zhangoufan newtonnetanewtonianmessagepassingnetworkfordeeplearningofinteratomicpotentialsandforces
AT dasakshaya newtonnetanewtonianmessagepassingnetworkfordeeplearningofinteratomicpotentialsandforces
AT steinchristopherj newtonnetanewtonianmessagepassingnetworkfordeeplearningofinteratomicpotentialsandforces
AT heidarzadehfarnaz newtonnetanewtonianmessagepassingnetworkfordeeplearningofinteratomicpotentialsandforces
AT liumeili newtonnetanewtonianmessagepassingnetworkfordeeplearningofinteratomicpotentialsandforces
AT headgordonmartin newtonnetanewtonianmessagepassingnetworkfordeeplearningofinteratomicpotentialsandforces
AT bertelsluke newtonnetanewtonianmessagepassingnetworkfordeeplearningofinteratomicpotentialsandforces
AT haohongxia newtonnetanewtonianmessagepassingnetworkfordeeplearningofinteratomicpotentialsandforces
AT levenitai newtonnetanewtonianmessagepassingnetworkfordeeplearningofinteratomicpotentialsandforces
AT headgordonteresa newtonnetanewtonianmessagepassingnetworkfordeeplearningofinteratomicpotentialsandforces