Cargando…
NewtonNet: a Newtonian message passing network for deep learning of interatomic potentials and forces
We report a new deep learning message passing network that takes inspiration from Newton's equations of motion to learn interatomic potentials and forces. With the advantage of directional information from trainable force vectors, and physics-infused operators that are inspired by Newtonian phy...
Autores principales: | Haghighatlari, Mojtaba, Li, Jie, Guan, Xingyi, Zhang, Oufan, Das, Akshaya, Stein, Christopher J., Heidar-Zadeh, Farnaz, Liu, Meili, Head-Gordon, Martin, Bertels, Luke, Hao, Hongxia, Leven, Itai, Head-Gordon, Teresa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
RSC
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9189860/ https://www.ncbi.nlm.nih.gov/pubmed/35769203 http://dx.doi.org/10.1039/d2dd00008c |
Ejemplares similares
-
A benchmark dataset for Hydrogen Combustion
por: Guan, Xingyi, et al.
Publicado: (2022) -
Newton and newtonianism: new studies
por: Force, J E, et al.
Publicado: (2004) -
Can electric fields drive chemistry for an aqueous microdroplet?
por: Hao, Hongxia, et al.
Publicado: (2022) -
Newton's Legacy : a Symposium on the Origins and Influence of Newtonian Science
Publicado: (1987) -
The Energetic Origins
of Pi–Pi Contacts in
Proteins
por: Carter-Fenk, Kevin, et al.
Publicado: (2023)