Cargando…
Limitations of machine learning models when predicting compounds with completely new chemistries: possible improvements applied to the discovery of new non-fullerene acceptors
We try to determine if machine learning (ML) methods, applied to the discovery of new materials on the basis of existing data sets, have the power to predict completely new classes of compounds (extrapolating) or perform well only when interpolating between known materials. We introduce the leave-on...
Autores principales: | Zhao, Zhi-Wen, del Cueto, Marcos, Troisi, Alessandro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
RSC
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9189862/ https://www.ncbi.nlm.nih.gov/pubmed/35769202 http://dx.doi.org/10.1039/d2dd00004k |
Ejemplares similares
-
High‐Efficiency Non‐Fullerene Acceptors Developed by Machine Learning and Quantum Chemistry
por: Zhang, Qi, et al.
Publicado: (2022) -
Photostability
of Fullerene and Non-Fullerene Polymer
Solar Cells: The Role of the Acceptor
por: Doumon, Nutifafa Y., et al.
Publicado: (2019) -
New Bithiophene Extended IDIC-Based Non-Fullerene Acceptors and Organic Photovoltaics Thereof
por: Jeong, Yeong Heon, et al.
Publicado: (2022) -
Interaction between the Non-Fullerene Acceptor ITIC
and Potassium
por: Chen, Guang-Hua, et al.
Publicado: (2019) -
Polaritons
in a Polycrystalline Layer of Non-fullerene
Acceptor
por: Liu, Lixuan, et al.
Publicado: (2023)