Cargando…
APTMS-BCAD modified magnetic iron oxide for magnetic solid-phase extraction of Cu(II) from aqueous solutions
Fe(3)O(4)@SiO(2)-3-aminopropyltrimethoxysilane-1,8-bis (3-chloropropoxy) anthracene-9,10-dione was synthesized as a new, sustainable, and environmentally friendly adsorbent for magnetic solid-phase extraction of Cu(II) from aqueous solutions. The structure of the adsorbent was characterized by FTIR,...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9189893/ https://www.ncbi.nlm.nih.gov/pubmed/35706942 http://dx.doi.org/10.1016/j.heliyon.2022.e09645 |
Sumario: | Fe(3)O(4)@SiO(2)-3-aminopropyltrimethoxysilane-1,8-bis (3-chloropropoxy) anthracene-9,10-dione was synthesized as a new, sustainable, and environmentally friendly adsorbent for magnetic solid-phase extraction of Cu(II) from aqueous solutions. The structure of the adsorbent was characterized by FTIR, XRD, SEM, EDX, and TEM analysis. Optimum conditions for Cu(II) adsorption were determined as adsorbent dose 0.04 g, pH 5.0, contact time 120 min, and beginning concentration of 30 mg/L in the adsorption process. The adsorption capacity for Cu(II) ions was 43.67 mg/g and the removal efficiency was 84.72 percent. The Langmuir isotherm and the pseudo-second-order model fit the experimental data better. Adsorption was a spontaneous and endothermic process based on the obtained thermodynamic properties such as ΔG°, ΔH°, and ΔS°. The results showed that the sorbent has good selectivity in the presence of competing ions. The method was determined to be accurate and effective using real water samples and CRM. |
---|