Cargando…

Adsorption kinetics and isotherms of binary metal ion aqueous solution using untreated venus shell

Among available technologies to remove heavy metals from wastewater, biosorption has gained more attention due to its high removal efficiency, friendly operation, and inexpensive cost. Despite many studies on metal adsorption from single ion solutions, kinetics and isotherms of binary metal ions sim...

Descripción completa

Detalles Bibliográficos
Autores principales: Khamwichit, Attaso, Dechapanya, Wipawee, Dechapanya, Wipada
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9189894/
https://www.ncbi.nlm.nih.gov/pubmed/35706950
http://dx.doi.org/10.1016/j.heliyon.2022.e09610
_version_ 1784725687477731328
author Khamwichit, Attaso
Dechapanya, Wipawee
Dechapanya, Wipada
author_facet Khamwichit, Attaso
Dechapanya, Wipawee
Dechapanya, Wipada
author_sort Khamwichit, Attaso
collection PubMed
description Among available technologies to remove heavy metals from wastewater, biosorption has gained more attention due to its high removal efficiency, friendly operation, and inexpensive cost. Despite many studies on metal adsorption from single ion solutions, kinetics and isotherms of binary metal ions simultaneously adsorbed onto biosorbents have not been thoroughly investigated to provide insight on involving mechanisms. This study explored the adsorption potential of untreated venus shells (UVS) that can be utilized in economical and environmentally-friendly ways. In this work, UVS of different sizes were prepared without chemical treatment as a biosorbent. Characterization of UVS was accomplished using nitrogen adsorption isotherm, FTIR, and SEM-EDX. Batch adsorption was carried out to study the effect of initial metal ion concentration, adsorbent dosage, and size on removing Cu(II) and Zn(II) from a binary solution of both metal ions using UVS. The experimental values of maximum adsorption capacities of Cu(II) and Zn(II) were 0.446 and 0.465 mg/g, respectively. The adsorption data were analyzed using the pseudo-first order, pseudo-second order, Elovich, and intraparticle diffusion rate equations. The pseudo-second order and the intraparticle diffusion model yielded the best fit to the experimental data for Cu(II) and Zn(II) ions, respectively. The equilibrium isotherm was examined using the Langmuir, Freundlich, Temkin, Dubinin–Radushkevich (D–R), and Elovich models. The Freundlich model best fits the Cu(II) and Zn(II) equilibrium adsorption data. The results indicated that the adsorption of Cu(II) and Zn(II) onto UVS-600 adsorbent could undergo a chemisorption mechanism. Both metal ions in an aqueous solution were competitively adsorbed onto the heterogeneous active sites available on the shell surfaces. Cu(II) and Zn(II) ions in the binary system could result in ionic interference between the adsorbed ions and the active sites.
format Online
Article
Text
id pubmed-9189894
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-91898942022-06-14 Adsorption kinetics and isotherms of binary metal ion aqueous solution using untreated venus shell Khamwichit, Attaso Dechapanya, Wipawee Dechapanya, Wipada Heliyon Research Article Among available technologies to remove heavy metals from wastewater, biosorption has gained more attention due to its high removal efficiency, friendly operation, and inexpensive cost. Despite many studies on metal adsorption from single ion solutions, kinetics and isotherms of binary metal ions simultaneously adsorbed onto biosorbents have not been thoroughly investigated to provide insight on involving mechanisms. This study explored the adsorption potential of untreated venus shells (UVS) that can be utilized in economical and environmentally-friendly ways. In this work, UVS of different sizes were prepared without chemical treatment as a biosorbent. Characterization of UVS was accomplished using nitrogen adsorption isotherm, FTIR, and SEM-EDX. Batch adsorption was carried out to study the effect of initial metal ion concentration, adsorbent dosage, and size on removing Cu(II) and Zn(II) from a binary solution of both metal ions using UVS. The experimental values of maximum adsorption capacities of Cu(II) and Zn(II) were 0.446 and 0.465 mg/g, respectively. The adsorption data were analyzed using the pseudo-first order, pseudo-second order, Elovich, and intraparticle diffusion rate equations. The pseudo-second order and the intraparticle diffusion model yielded the best fit to the experimental data for Cu(II) and Zn(II) ions, respectively. The equilibrium isotherm was examined using the Langmuir, Freundlich, Temkin, Dubinin–Radushkevich (D–R), and Elovich models. The Freundlich model best fits the Cu(II) and Zn(II) equilibrium adsorption data. The results indicated that the adsorption of Cu(II) and Zn(II) onto UVS-600 adsorbent could undergo a chemisorption mechanism. Both metal ions in an aqueous solution were competitively adsorbed onto the heterogeneous active sites available on the shell surfaces. Cu(II) and Zn(II) ions in the binary system could result in ionic interference between the adsorbed ions and the active sites. Elsevier 2022-06-02 /pmc/articles/PMC9189894/ /pubmed/35706950 http://dx.doi.org/10.1016/j.heliyon.2022.e09610 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Research Article
Khamwichit, Attaso
Dechapanya, Wipawee
Dechapanya, Wipada
Adsorption kinetics and isotherms of binary metal ion aqueous solution using untreated venus shell
title Adsorption kinetics and isotherms of binary metal ion aqueous solution using untreated venus shell
title_full Adsorption kinetics and isotherms of binary metal ion aqueous solution using untreated venus shell
title_fullStr Adsorption kinetics and isotherms of binary metal ion aqueous solution using untreated venus shell
title_full_unstemmed Adsorption kinetics and isotherms of binary metal ion aqueous solution using untreated venus shell
title_short Adsorption kinetics and isotherms of binary metal ion aqueous solution using untreated venus shell
title_sort adsorption kinetics and isotherms of binary metal ion aqueous solution using untreated venus shell
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9189894/
https://www.ncbi.nlm.nih.gov/pubmed/35706950
http://dx.doi.org/10.1016/j.heliyon.2022.e09610
work_keys_str_mv AT khamwichitattaso adsorptionkineticsandisothermsofbinarymetalionaqueoussolutionusinguntreatedvenusshell
AT dechapanyawipawee adsorptionkineticsandisothermsofbinarymetalionaqueoussolutionusinguntreatedvenusshell
AT dechapanyawipada adsorptionkineticsandisothermsofbinarymetalionaqueoussolutionusinguntreatedvenusshell