Cargando…
Adsorption kinetics and isotherms of binary metal ion aqueous solution using untreated venus shell
Among available technologies to remove heavy metals from wastewater, biosorption has gained more attention due to its high removal efficiency, friendly operation, and inexpensive cost. Despite many studies on metal adsorption from single ion solutions, kinetics and isotherms of binary metal ions sim...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9189894/ https://www.ncbi.nlm.nih.gov/pubmed/35706950 http://dx.doi.org/10.1016/j.heliyon.2022.e09610 |
_version_ | 1784725687477731328 |
---|---|
author | Khamwichit, Attaso Dechapanya, Wipawee Dechapanya, Wipada |
author_facet | Khamwichit, Attaso Dechapanya, Wipawee Dechapanya, Wipada |
author_sort | Khamwichit, Attaso |
collection | PubMed |
description | Among available technologies to remove heavy metals from wastewater, biosorption has gained more attention due to its high removal efficiency, friendly operation, and inexpensive cost. Despite many studies on metal adsorption from single ion solutions, kinetics and isotherms of binary metal ions simultaneously adsorbed onto biosorbents have not been thoroughly investigated to provide insight on involving mechanisms. This study explored the adsorption potential of untreated venus shells (UVS) that can be utilized in economical and environmentally-friendly ways. In this work, UVS of different sizes were prepared without chemical treatment as a biosorbent. Characterization of UVS was accomplished using nitrogen adsorption isotherm, FTIR, and SEM-EDX. Batch adsorption was carried out to study the effect of initial metal ion concentration, adsorbent dosage, and size on removing Cu(II) and Zn(II) from a binary solution of both metal ions using UVS. The experimental values of maximum adsorption capacities of Cu(II) and Zn(II) were 0.446 and 0.465 mg/g, respectively. The adsorption data were analyzed using the pseudo-first order, pseudo-second order, Elovich, and intraparticle diffusion rate equations. The pseudo-second order and the intraparticle diffusion model yielded the best fit to the experimental data for Cu(II) and Zn(II) ions, respectively. The equilibrium isotherm was examined using the Langmuir, Freundlich, Temkin, Dubinin–Radushkevich (D–R), and Elovich models. The Freundlich model best fits the Cu(II) and Zn(II) equilibrium adsorption data. The results indicated that the adsorption of Cu(II) and Zn(II) onto UVS-600 adsorbent could undergo a chemisorption mechanism. Both metal ions in an aqueous solution were competitively adsorbed onto the heterogeneous active sites available on the shell surfaces. Cu(II) and Zn(II) ions in the binary system could result in ionic interference between the adsorbed ions and the active sites. |
format | Online Article Text |
id | pubmed-9189894 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-91898942022-06-14 Adsorption kinetics and isotherms of binary metal ion aqueous solution using untreated venus shell Khamwichit, Attaso Dechapanya, Wipawee Dechapanya, Wipada Heliyon Research Article Among available technologies to remove heavy metals from wastewater, biosorption has gained more attention due to its high removal efficiency, friendly operation, and inexpensive cost. Despite many studies on metal adsorption from single ion solutions, kinetics and isotherms of binary metal ions simultaneously adsorbed onto biosorbents have not been thoroughly investigated to provide insight on involving mechanisms. This study explored the adsorption potential of untreated venus shells (UVS) that can be utilized in economical and environmentally-friendly ways. In this work, UVS of different sizes were prepared without chemical treatment as a biosorbent. Characterization of UVS was accomplished using nitrogen adsorption isotherm, FTIR, and SEM-EDX. Batch adsorption was carried out to study the effect of initial metal ion concentration, adsorbent dosage, and size on removing Cu(II) and Zn(II) from a binary solution of both metal ions using UVS. The experimental values of maximum adsorption capacities of Cu(II) and Zn(II) were 0.446 and 0.465 mg/g, respectively. The adsorption data were analyzed using the pseudo-first order, pseudo-second order, Elovich, and intraparticle diffusion rate equations. The pseudo-second order and the intraparticle diffusion model yielded the best fit to the experimental data for Cu(II) and Zn(II) ions, respectively. The equilibrium isotherm was examined using the Langmuir, Freundlich, Temkin, Dubinin–Radushkevich (D–R), and Elovich models. The Freundlich model best fits the Cu(II) and Zn(II) equilibrium adsorption data. The results indicated that the adsorption of Cu(II) and Zn(II) onto UVS-600 adsorbent could undergo a chemisorption mechanism. Both metal ions in an aqueous solution were competitively adsorbed onto the heterogeneous active sites available on the shell surfaces. Cu(II) and Zn(II) ions in the binary system could result in ionic interference between the adsorbed ions and the active sites. Elsevier 2022-06-02 /pmc/articles/PMC9189894/ /pubmed/35706950 http://dx.doi.org/10.1016/j.heliyon.2022.e09610 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Article Khamwichit, Attaso Dechapanya, Wipawee Dechapanya, Wipada Adsorption kinetics and isotherms of binary metal ion aqueous solution using untreated venus shell |
title | Adsorption kinetics and isotherms of binary metal ion aqueous solution using untreated venus shell |
title_full | Adsorption kinetics and isotherms of binary metal ion aqueous solution using untreated venus shell |
title_fullStr | Adsorption kinetics and isotherms of binary metal ion aqueous solution using untreated venus shell |
title_full_unstemmed | Adsorption kinetics and isotherms of binary metal ion aqueous solution using untreated venus shell |
title_short | Adsorption kinetics and isotherms of binary metal ion aqueous solution using untreated venus shell |
title_sort | adsorption kinetics and isotherms of binary metal ion aqueous solution using untreated venus shell |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9189894/ https://www.ncbi.nlm.nih.gov/pubmed/35706950 http://dx.doi.org/10.1016/j.heliyon.2022.e09610 |
work_keys_str_mv | AT khamwichitattaso adsorptionkineticsandisothermsofbinarymetalionaqueoussolutionusinguntreatedvenusshell AT dechapanyawipawee adsorptionkineticsandisothermsofbinarymetalionaqueoussolutionusinguntreatedvenusshell AT dechapanyawipada adsorptionkineticsandisothermsofbinarymetalionaqueoussolutionusinguntreatedvenusshell |