Cargando…

Smart deployment of IoT-TelosB service care StreamRobot using software-defined reliability optimisation design

Intelligent service care robots have increasingly been developed in mission-critical sectors such as healthcare systems, transportation, manufacturing, and environmental applications. The major drawbacks include the open-source Internet of Things (IoT) platform vulnerabilities, node failures, comput...

Descripción completa

Detalles Bibliográficos
Autores principales: Okafor, Kennedy Chinedu, Longe, Omowunmi Mary
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9189897/
https://www.ncbi.nlm.nih.gov/pubmed/35706943
http://dx.doi.org/10.1016/j.heliyon.2022.e09634
_version_ 1784725688184471552
author Okafor, Kennedy Chinedu
Longe, Omowunmi Mary
author_facet Okafor, Kennedy Chinedu
Longe, Omowunmi Mary
author_sort Okafor, Kennedy Chinedu
collection PubMed
description Intelligent service care robots have increasingly been developed in mission-critical sectors such as healthcare systems, transportation, manufacturing, and environmental applications. The major drawbacks include the open-source Internet of Things (IoT) platform vulnerabilities, node failures, computational latency, and small memory capacity in IoT sensing nodes. This article provides reliable predictive analytics with the optimisation of data transmission characteristics in StreamRobot. Software-defined reliable optimisation design is applied in the system architecture. For the IoT implementation, the edge system model formulation is presented with a focus on edge cluster log-normality distribution, reliability, and equilibrium stability considerations. A real-world scenario for accurate data streams generation from in-built TelosB sensing nodes is converged at a sink-analytic dashboard. Two-phase configurations, namely off-taker and on-demand, link-state protocols are mapped for deterministic data stream offloading. An orphan reconnection trigger mechanism is used for reliable node-to-sink resilient data transmissions. Data collection is achieved, using component-based programming in the experimental testbed. Measurement parameters are derived with TelosB IoT nodes. Reliability validations on remote monitoring and prediction processes are studied considering neural constrained software-defined networking (SDN) intelligence. An OpenFlow-SDN construct is deployed to offload traffic from the edge to the fog layer. At the core, fog detection-to-cloud predictive machine learning (FD-CPML) is used to predict real-time data streams. Prediction accuracy is validated with decision tree, logistic regression, and the proposed FD-CPML. The data streams latency gave 40.00%, 33.33%, and 26.67%, respectively. Similarly, linear predictive scalability behaviour on the network plane gave 30.12%, 33.73%, and 36.15% respectively. The results show satisfactory responses in terms of reliable communication and intelligent monitoring of node failures.
format Online
Article
Text
id pubmed-9189897
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-91898972022-06-14 Smart deployment of IoT-TelosB service care StreamRobot using software-defined reliability optimisation design Okafor, Kennedy Chinedu Longe, Omowunmi Mary Heliyon Research Article Intelligent service care robots have increasingly been developed in mission-critical sectors such as healthcare systems, transportation, manufacturing, and environmental applications. The major drawbacks include the open-source Internet of Things (IoT) platform vulnerabilities, node failures, computational latency, and small memory capacity in IoT sensing nodes. This article provides reliable predictive analytics with the optimisation of data transmission characteristics in StreamRobot. Software-defined reliable optimisation design is applied in the system architecture. For the IoT implementation, the edge system model formulation is presented with a focus on edge cluster log-normality distribution, reliability, and equilibrium stability considerations. A real-world scenario for accurate data streams generation from in-built TelosB sensing nodes is converged at a sink-analytic dashboard. Two-phase configurations, namely off-taker and on-demand, link-state protocols are mapped for deterministic data stream offloading. An orphan reconnection trigger mechanism is used for reliable node-to-sink resilient data transmissions. Data collection is achieved, using component-based programming in the experimental testbed. Measurement parameters are derived with TelosB IoT nodes. Reliability validations on remote monitoring and prediction processes are studied considering neural constrained software-defined networking (SDN) intelligence. An OpenFlow-SDN construct is deployed to offload traffic from the edge to the fog layer. At the core, fog detection-to-cloud predictive machine learning (FD-CPML) is used to predict real-time data streams. Prediction accuracy is validated with decision tree, logistic regression, and the proposed FD-CPML. The data streams latency gave 40.00%, 33.33%, and 26.67%, respectively. Similarly, linear predictive scalability behaviour on the network plane gave 30.12%, 33.73%, and 36.15% respectively. The results show satisfactory responses in terms of reliable communication and intelligent monitoring of node failures. Elsevier 2022-06-07 /pmc/articles/PMC9189897/ /pubmed/35706943 http://dx.doi.org/10.1016/j.heliyon.2022.e09634 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Research Article
Okafor, Kennedy Chinedu
Longe, Omowunmi Mary
Smart deployment of IoT-TelosB service care StreamRobot using software-defined reliability optimisation design
title Smart deployment of IoT-TelosB service care StreamRobot using software-defined reliability optimisation design
title_full Smart deployment of IoT-TelosB service care StreamRobot using software-defined reliability optimisation design
title_fullStr Smart deployment of IoT-TelosB service care StreamRobot using software-defined reliability optimisation design
title_full_unstemmed Smart deployment of IoT-TelosB service care StreamRobot using software-defined reliability optimisation design
title_short Smart deployment of IoT-TelosB service care StreamRobot using software-defined reliability optimisation design
title_sort smart deployment of iot-telosb service care streamrobot using software-defined reliability optimisation design
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9189897/
https://www.ncbi.nlm.nih.gov/pubmed/35706943
http://dx.doi.org/10.1016/j.heliyon.2022.e09634
work_keys_str_mv AT okaforkennedychinedu smartdeploymentofiottelosbservicecarestreamrobotusingsoftwaredefinedreliabilityoptimisationdesign
AT longeomowunmimary smartdeploymentofiottelosbservicecarestreamrobotusingsoftwaredefinedreliabilityoptimisationdesign