Cargando…
Covariance shrinkage can assess and improve functional connectomes
Connectomes derived from resting-state functional MRI scans have significantly benefited from the development of dedicated fMRI motion correction and denoising algorithms. But they are based on empirical correlations that can produce unreliable results in high dimension low sample size settings. A f...
Autores principales: | Honnorat, Nicolas, Habes, Mohamad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9189899/ https://www.ncbi.nlm.nih.gov/pubmed/35460918 http://dx.doi.org/10.1016/j.neuroimage.2022.119229 |
Ejemplares similares
-
Shrinkage estimation for mean and covariance matrices
por: Tsukuma, Hisayuki, et al.
Publicado: (2020) -
Shrinkage estimators of large covariance matrices with Toeplitz targets in array signal processing
por: Zhang, Bin, et al.
Publicado: (2022) -
Multiple Imputation of Missing Covariates in NONMEM and Evaluation of the Method’s Sensitivity to η-Shrinkage
por: Johansson, Åsa M., et al.
Publicado: (2013) -
Shrinkage estimation of non-negative mean vector with unknown covariance under balance loss
por: Karamikabir, Hamid, et al.
Publicado: (2018) -
The segregated connectome of late-life depression: a combined cortical thickness and structural covariance analysis
por: Mak, Elijah, et al.
Publicado: (2016)