Cargando…
Predicting cardiovascular risk from national administrative databases using a combined survival analysis and deep learning approach
BACKGROUND: Machine learning-based risk prediction models may outperform traditional statistical models in large datasets with many variables, by identifying both novel predictors and the complex interactions between them. This study compared deep learning extensions of survival analysis models with...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9189958/ https://www.ncbi.nlm.nih.gov/pubmed/34910160 http://dx.doi.org/10.1093/ije/dyab258 |
_version_ | 1784725698846392320 |
---|---|
author | Barbieri, Sebastiano Mehta, Suneela Wu, Billy Bharat, Chrianna Poppe, Katrina Jorm, Louisa Jackson, Rod |
author_facet | Barbieri, Sebastiano Mehta, Suneela Wu, Billy Bharat, Chrianna Poppe, Katrina Jorm, Louisa Jackson, Rod |
author_sort | Barbieri, Sebastiano |
collection | PubMed |
description | BACKGROUND: Machine learning-based risk prediction models may outperform traditional statistical models in large datasets with many variables, by identifying both novel predictors and the complex interactions between them. This study compared deep learning extensions of survival analysis models with Cox proportional hazards models for predicting cardiovascular disease (CVD) risk in national health administrative datasets. METHODS: Using individual person linkage of administrative datasets, we constructed a cohort of all New Zealanders aged 30–74 who interacted with public health services during 2012. After excluding people with prior CVD, we developed sex-specific deep learning and Cox proportional hazards models to estimate the risk of CVD events within 5 years. Models were compared based on the proportion of explained variance, model calibration and discrimination, and hazard ratios for predictor variables. RESULTS: First CVD events occurred in 61 927 of 2 164 872 people. Within the reference group, the largest hazard ratios estimated by the deep learning models were for tobacco use in women (2.04, 95% CI: 1.99, 2.10) and chronic obstructive pulmonary disease with acute lower respiratory infection in men (1.56, 95% CI: 1.50, 1.62). Other identified predictors (e.g. hypertension, chest pain, diabetes) aligned with current knowledge about CVD risk factors. Deep learning outperformed Cox proportional hazards models on the basis of proportion of explained variance (R(2): 0.468 vs 0.425 in women and 0.383 vs 0.348 in men), calibration and discrimination (all P <0.0001). CONCLUSIONS: Deep learning extensions of survival analysis models can be applied to large health administrative datasets to derive interpretable CVD risk prediction equations that are more accurate than traditional Cox proportional hazards models. |
format | Online Article Text |
id | pubmed-9189958 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-91899582022-06-14 Predicting cardiovascular risk from national administrative databases using a combined survival analysis and deep learning approach Barbieri, Sebastiano Mehta, Suneela Wu, Billy Bharat, Chrianna Poppe, Katrina Jorm, Louisa Jackson, Rod Int J Epidemiol Methods BACKGROUND: Machine learning-based risk prediction models may outperform traditional statistical models in large datasets with many variables, by identifying both novel predictors and the complex interactions between them. This study compared deep learning extensions of survival analysis models with Cox proportional hazards models for predicting cardiovascular disease (CVD) risk in national health administrative datasets. METHODS: Using individual person linkage of administrative datasets, we constructed a cohort of all New Zealanders aged 30–74 who interacted with public health services during 2012. After excluding people with prior CVD, we developed sex-specific deep learning and Cox proportional hazards models to estimate the risk of CVD events within 5 years. Models were compared based on the proportion of explained variance, model calibration and discrimination, and hazard ratios for predictor variables. RESULTS: First CVD events occurred in 61 927 of 2 164 872 people. Within the reference group, the largest hazard ratios estimated by the deep learning models were for tobacco use in women (2.04, 95% CI: 1.99, 2.10) and chronic obstructive pulmonary disease with acute lower respiratory infection in men (1.56, 95% CI: 1.50, 1.62). Other identified predictors (e.g. hypertension, chest pain, diabetes) aligned with current knowledge about CVD risk factors. Deep learning outperformed Cox proportional hazards models on the basis of proportion of explained variance (R(2): 0.468 vs 0.425 in women and 0.383 vs 0.348 in men), calibration and discrimination (all P <0.0001). CONCLUSIONS: Deep learning extensions of survival analysis models can be applied to large health administrative datasets to derive interpretable CVD risk prediction equations that are more accurate than traditional Cox proportional hazards models. Oxford University Press 2021-12-15 /pmc/articles/PMC9189958/ /pubmed/34910160 http://dx.doi.org/10.1093/ije/dyab258 Text en © The Author(s) 2021. Published by Oxford University Press on behalf of the International Epidemiological Association. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Methods Barbieri, Sebastiano Mehta, Suneela Wu, Billy Bharat, Chrianna Poppe, Katrina Jorm, Louisa Jackson, Rod Predicting cardiovascular risk from national administrative databases using a combined survival analysis and deep learning approach |
title | Predicting cardiovascular risk from national administrative databases using a combined survival analysis and deep learning approach |
title_full | Predicting cardiovascular risk from national administrative databases using a combined survival analysis and deep learning approach |
title_fullStr | Predicting cardiovascular risk from national administrative databases using a combined survival analysis and deep learning approach |
title_full_unstemmed | Predicting cardiovascular risk from national administrative databases using a combined survival analysis and deep learning approach |
title_short | Predicting cardiovascular risk from national administrative databases using a combined survival analysis and deep learning approach |
title_sort | predicting cardiovascular risk from national administrative databases using a combined survival analysis and deep learning approach |
topic | Methods |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9189958/ https://www.ncbi.nlm.nih.gov/pubmed/34910160 http://dx.doi.org/10.1093/ije/dyab258 |
work_keys_str_mv | AT barbierisebastiano predictingcardiovascularriskfromnationaladministrativedatabasesusingacombinedsurvivalanalysisanddeeplearningapproach AT mehtasuneela predictingcardiovascularriskfromnationaladministrativedatabasesusingacombinedsurvivalanalysisanddeeplearningapproach AT wubilly predictingcardiovascularriskfromnationaladministrativedatabasesusingacombinedsurvivalanalysisanddeeplearningapproach AT bharatchrianna predictingcardiovascularriskfromnationaladministrativedatabasesusingacombinedsurvivalanalysisanddeeplearningapproach AT poppekatrina predictingcardiovascularriskfromnationaladministrativedatabasesusingacombinedsurvivalanalysisanddeeplearningapproach AT jormlouisa predictingcardiovascularriskfromnationaladministrativedatabasesusingacombinedsurvivalanalysisanddeeplearningapproach AT jacksonrod predictingcardiovascularriskfromnationaladministrativedatabasesusingacombinedsurvivalanalysisanddeeplearningapproach |