Cargando…
Predicting cardiovascular risk from national administrative databases using a combined survival analysis and deep learning approach
BACKGROUND: Machine learning-based risk prediction models may outperform traditional statistical models in large datasets with many variables, by identifying both novel predictors and the complex interactions between them. This study compared deep learning extensions of survival analysis models with...
Autores principales: | Barbieri, Sebastiano, Mehta, Suneela, Wu, Billy, Bharat, Chrianna, Poppe, Katrina, Jorm, Louisa, Jackson, Rod |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9189958/ https://www.ncbi.nlm.nih.gov/pubmed/34910160 http://dx.doi.org/10.1093/ije/dyab258 |
Ejemplares similares
-
Association between gout and cardiovascular outcomes in adults with no history of cardiovascular disease: large data linkage study in New Zealand
por: Cai, Ken, et al.
Publicado: (2022) -
The effect of opioid analgesics, benzodiazepines, gabapentinoids, and opioid agonist treatment on mortality risk among opioid-dependent people.
por: Bharat, Chrianna, et al.
Publicado: (2022) -
Travel times to hospitals in Australia
por: Barbieri, Sebastiano, et al.
Publicado: (2019) -
Cardiovascular medication changes over 5 years in a national data linkage study: implications for risk prediction models
por: Mehta, Suneela, et al.
Publicado: (2018) -
Measuring dementia incidence within a cohort of 267,153 older Australians using routinely collected linked administrative data
por: Welberry, Heidi J., et al.
Publicado: (2020)