Cargando…

Metformin alleviates prolonged isoflurane inhalation induced cognitive decline via reducing neuroinflammation in adult mice

With the widespread use of volatile anesthetic agents in the prolonged sedation for COVID-19 pneumonia and ARDS, there is an urgent need to investigate the effects and treatments of lengthy low-concentration inhaled anesthetics exposure on cognitive function in adults. Previous studies showed that g...

Descripción completa

Detalles Bibliográficos
Autores principales: Peng, Liangyu, Liu, Shuai, Xu, Jiyan, Xie, Wenjia, Fang, Xin, Xia, Tianjiao, Gu, Xiaoping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier B.V. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9190296/
https://www.ncbi.nlm.nih.gov/pubmed/35709590
http://dx.doi.org/10.1016/j.intimp.2022.108903
Descripción
Sumario:With the widespread use of volatile anesthetic agents in the prolonged sedation for COVID-19 pneumonia and ARDS, there is an urgent need to investigate the effects and treatments of lengthy low-concentration inhaled anesthetics exposure on cognitive function in adults. Previous studies showed that general anesthetics dose- and exposure length-dependently induced neuroinflammatory response and cognitive decline in neonatal and aging animals. The anti-diabetes drug metformin has anti-neuroinflammation effects by modulating microglial polarization and inhibiting astrocyte activation. In this study, we demonstrated that the inhalation of 1.3% isoflurane (a sub-minimal alveolar concentration, sub-MAC) for 6 h impaired recognition of novel objects from Day 1 to Day3 in adult mice. Prolonged sub-MAC isoflurane exposure also triggered typically reactive microglia and A1-like astrocytes in the hippocampus of adult mice on Day 3 after anesthesia. In addition, prolonged isoflurane inhalation switched microglia into a proinflammatory M1 phenotype characterized by elevated CD68 and iNOS as well as decreased arginase-1 and IL-10. Metformin pretreatment before anesthesia enhanced cognitive performance in the novel object test. The positive cellular modifications promoted by metformin pretreatment included the inhibition of reactive microglia and A1-like astrocytes and the polarization of microglia into M2 phenotype in the hippocampus of adult mice. In conclusion, prolonged sub-MAC isoflurane exposure triggered significant hippocampal neuroinflammation and cognitive decline in adult mice which can be alleviated by metformin pretreatment via inhibiting reactive microglia and A1-like astrocytes and promoting microglia polarization toward anti-inflammatory phenotype in the hippocampus.