Cargando…
Machine Learning to Identify Patients at Risk of Inappropriate Dosing for Renal Risk Medications: A Critical Comment on Kaas-Hansen et al [Letter]
Autores principales: | Houlind, Morten Baltzer, Iversen, Esben, Jawad, Baker Nawfal, Kallemose, Thomas, Hornum, Mads |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9190741/ https://www.ncbi.nlm.nih.gov/pubmed/35707499 http://dx.doi.org/10.2147/CLEP.S369602 |
Ejemplares similares
-
Machine Learning to Identify Patients at Risk of Inappropriate Dosing for Renal Risk Medications: A Critical Comment on Kaas-Hansen et al [Response to Letter]
por: Kaas-Hansen, Benjamin Skov, et al.
Publicado: (2022) -
Utility of suPAR and NGAL for AKI Risk Stratification and Early Optimization of Renal Risk Medications among Older Patients in the Emergency Department
por: Walls, Anne Byriel, et al.
Publicado: (2021) -
Elevated suPAR Is an Independent Risk Marker for Incident Kidney Disease in Acute Medical Patients
por: Iversen, Esben, et al.
Publicado: (2020) -
Soluble urokinase plasminogen activator receptor and decline in kidney function among patients without kidney disease
por: Iversen, Esben, et al.
Publicado: (2022) -
Comparison of 24‐hour urinary creatinine clearance and estimated glomerular filtration rate based on a panel of filtration markers in patients with chronic kidney disease
por: Iversen, Esben, et al.
Publicado: (2022)