Cargando…
sEMG-Based Gesture Classifier for a Rehabilitation Glove
Human hand gesture recognition from surface electromyography (sEMG) signals is one of the main paradigms for prosthetic and rehabilitation device control. The accuracy of gesture recognition is correlated with the control mechanism. In this work, a new classifier based on the Bayesian neural network...
Autores principales: | Copaci, Dorin, Arias, Janeth, Gómez-Tomé, Marcos, Moreno, Luis, Blanco, Dolores |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9190783/ https://www.ncbi.nlm.nih.gov/pubmed/35706550 http://dx.doi.org/10.3389/fnbot.2022.750482 |
Ejemplares similares
-
A High-Level Control Algorithm Based on sEMG Signalling for an Elbow Joint SMA Exoskeleton
por: Copaci, Dorin, et al.
Publicado: (2018) -
Simultaneous sEMG Classification of Hand/Wrist Gestures and Forces
por: Leone, Francesca, et al.
Publicado: (2019) -
Compound motion decoding based on sEMG consisting of gestures, wrist angles, and strength
por: Zhang, Xiaodong, et al.
Publicado: (2022) -
LST-EMG-Net: Long short-term transformer feature fusion network for sEMG gesture recognition
por: Zhang, Wenli, et al.
Publicado: (2023) -
Hierarchical strategy for sEMG classification of the hand/wrist gestures and forces of transradial amputees
por: Leone, Francesca, et al.
Publicado: (2023)