Cargando…

The Contribution of Chest X-Ray to Predict Extubation Failure in Mechanically Ventilated Patients Using Machine Learning-Based Algorithms

To evaluate the contribution of a preextubation chest X-ray (CXR) to identify the risk of extubation failure in mechanically ventilated patients. DESIGN: Retrospective cohort study. SETTINGS: ICUs in a tertiary center (the Medical Information Mart for Intensive Care IV database). PATIENTS: Patients...

Descripción completa

Detalles Bibliográficos
Autores principales: Fukuchi, Kiyoyasu, Osawa, Itsuki, Satake, Shunya, Ito, Honoka, Shibata, Junichiro, Dohi, Eisuke, Kasugai, Daisuke, Miyamoto, Yoshihisa, Ohbe, Hiroyuki, Tamoto, Mitsuhiro, Yamada, Naoki, Yoshikawa, Keisuke, Goto, Tadahiro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Lippincott Williams & Wilkins 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9191311/
https://www.ncbi.nlm.nih.gov/pubmed/35702351
http://dx.doi.org/10.1097/CCE.0000000000000718
_version_ 1784725984619003904
author Fukuchi, Kiyoyasu
Osawa, Itsuki
Satake, Shunya
Ito, Honoka
Shibata, Junichiro
Dohi, Eisuke
Kasugai, Daisuke
Miyamoto, Yoshihisa
Ohbe, Hiroyuki
Tamoto, Mitsuhiro
Yamada, Naoki
Yoshikawa, Keisuke
Goto, Tadahiro
author_facet Fukuchi, Kiyoyasu
Osawa, Itsuki
Satake, Shunya
Ito, Honoka
Shibata, Junichiro
Dohi, Eisuke
Kasugai, Daisuke
Miyamoto, Yoshihisa
Ohbe, Hiroyuki
Tamoto, Mitsuhiro
Yamada, Naoki
Yoshikawa, Keisuke
Goto, Tadahiro
author_sort Fukuchi, Kiyoyasu
collection PubMed
description To evaluate the contribution of a preextubation chest X-ray (CXR) to identify the risk of extubation failure in mechanically ventilated patients. DESIGN: Retrospective cohort study. SETTINGS: ICUs in a tertiary center (the Medical Information Mart for Intensive Care IV database). PATIENTS: Patients greater than or equal to 18 years old who were mechanically ventilated and extubated after a spontaneous breathing trial. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Among 1,066 mechanically ventilated patients, 132 patients (12%) experienced extubation failure, defined as reintubation or death within 48 hours of extubation. To predict extubation failure, we developed the following models based on deep learning (EfficientNet) and machine learning (LightGBM) with the training data: 1) model using only the rapid-shallow breathing index (RSBI), 2) model using RSBI and CXR, 3) model using all candidate clinical predictors (i.e., patient demographics, vital signs, laboratory values, and ventilator settings) other than CXR, and 4) model using all candidate clinical predictors with CXR. We compared the predictive abilities between models with the test data to investigate the predictive contribution of CXR. The predictive ability of the model using CXR as well as RSBI was not significantly higher than that of the model using only RSBI (c-statistics, 0.56 vs 0.56; p = 0.95). The predictive ability of the model using clinical predictors with CXR was not significantly higher than that of the model using all clinical predictors other than CXR (c-statistics, 0.71 vs 0.70; p = 0.12). Based on SHapley Additive exPlanations values to interpret the model using all clinical predictors with CXR, CXR was less likely to contribute to the predictive ability than other predictors (e.g., duration of mechanical ventilation, inability to follow commands, and heart rate). CONCLUSIONS: Adding CXR to a set of other clinical predictors in our prediction model did not significantly improve the predictive ability of extubation failure in mechanically ventilated patients.
format Online
Article
Text
id pubmed-9191311
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Lippincott Williams & Wilkins
record_format MEDLINE/PubMed
spelling pubmed-91913112022-06-13 The Contribution of Chest X-Ray to Predict Extubation Failure in Mechanically Ventilated Patients Using Machine Learning-Based Algorithms Fukuchi, Kiyoyasu Osawa, Itsuki Satake, Shunya Ito, Honoka Shibata, Junichiro Dohi, Eisuke Kasugai, Daisuke Miyamoto, Yoshihisa Ohbe, Hiroyuki Tamoto, Mitsuhiro Yamada, Naoki Yoshikawa, Keisuke Goto, Tadahiro Crit Care Explor Observational Study To evaluate the contribution of a preextubation chest X-ray (CXR) to identify the risk of extubation failure in mechanically ventilated patients. DESIGN: Retrospective cohort study. SETTINGS: ICUs in a tertiary center (the Medical Information Mart for Intensive Care IV database). PATIENTS: Patients greater than or equal to 18 years old who were mechanically ventilated and extubated after a spontaneous breathing trial. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Among 1,066 mechanically ventilated patients, 132 patients (12%) experienced extubation failure, defined as reintubation or death within 48 hours of extubation. To predict extubation failure, we developed the following models based on deep learning (EfficientNet) and machine learning (LightGBM) with the training data: 1) model using only the rapid-shallow breathing index (RSBI), 2) model using RSBI and CXR, 3) model using all candidate clinical predictors (i.e., patient demographics, vital signs, laboratory values, and ventilator settings) other than CXR, and 4) model using all candidate clinical predictors with CXR. We compared the predictive abilities between models with the test data to investigate the predictive contribution of CXR. The predictive ability of the model using CXR as well as RSBI was not significantly higher than that of the model using only RSBI (c-statistics, 0.56 vs 0.56; p = 0.95). The predictive ability of the model using clinical predictors with CXR was not significantly higher than that of the model using all clinical predictors other than CXR (c-statistics, 0.71 vs 0.70; p = 0.12). Based on SHapley Additive exPlanations values to interpret the model using all clinical predictors with CXR, CXR was less likely to contribute to the predictive ability than other predictors (e.g., duration of mechanical ventilation, inability to follow commands, and heart rate). CONCLUSIONS: Adding CXR to a set of other clinical predictors in our prediction model did not significantly improve the predictive ability of extubation failure in mechanically ventilated patients. Lippincott Williams & Wilkins 2022-06-10 /pmc/articles/PMC9191311/ /pubmed/35702351 http://dx.doi.org/10.1097/CCE.0000000000000718 Text en Copyright © 2022 The Authors. Published by Wolters Kluwer Health, Inc. on behalf of the Society of Critical Care Medicine. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) , where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.
spellingShingle Observational Study
Fukuchi, Kiyoyasu
Osawa, Itsuki
Satake, Shunya
Ito, Honoka
Shibata, Junichiro
Dohi, Eisuke
Kasugai, Daisuke
Miyamoto, Yoshihisa
Ohbe, Hiroyuki
Tamoto, Mitsuhiro
Yamada, Naoki
Yoshikawa, Keisuke
Goto, Tadahiro
The Contribution of Chest X-Ray to Predict Extubation Failure in Mechanically Ventilated Patients Using Machine Learning-Based Algorithms
title The Contribution of Chest X-Ray to Predict Extubation Failure in Mechanically Ventilated Patients Using Machine Learning-Based Algorithms
title_full The Contribution of Chest X-Ray to Predict Extubation Failure in Mechanically Ventilated Patients Using Machine Learning-Based Algorithms
title_fullStr The Contribution of Chest X-Ray to Predict Extubation Failure in Mechanically Ventilated Patients Using Machine Learning-Based Algorithms
title_full_unstemmed The Contribution of Chest X-Ray to Predict Extubation Failure in Mechanically Ventilated Patients Using Machine Learning-Based Algorithms
title_short The Contribution of Chest X-Ray to Predict Extubation Failure in Mechanically Ventilated Patients Using Machine Learning-Based Algorithms
title_sort contribution of chest x-ray to predict extubation failure in mechanically ventilated patients using machine learning-based algorithms
topic Observational Study
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9191311/
https://www.ncbi.nlm.nih.gov/pubmed/35702351
http://dx.doi.org/10.1097/CCE.0000000000000718
work_keys_str_mv AT fukuchikiyoyasu thecontributionofchestxraytopredictextubationfailureinmechanicallyventilatedpatientsusingmachinelearningbasedalgorithms
AT osawaitsuki thecontributionofchestxraytopredictextubationfailureinmechanicallyventilatedpatientsusingmachinelearningbasedalgorithms
AT satakeshunya thecontributionofchestxraytopredictextubationfailureinmechanicallyventilatedpatientsusingmachinelearningbasedalgorithms
AT itohonoka thecontributionofchestxraytopredictextubationfailureinmechanicallyventilatedpatientsusingmachinelearningbasedalgorithms
AT shibatajunichiro thecontributionofchestxraytopredictextubationfailureinmechanicallyventilatedpatientsusingmachinelearningbasedalgorithms
AT dohieisuke thecontributionofchestxraytopredictextubationfailureinmechanicallyventilatedpatientsusingmachinelearningbasedalgorithms
AT kasugaidaisuke thecontributionofchestxraytopredictextubationfailureinmechanicallyventilatedpatientsusingmachinelearningbasedalgorithms
AT miyamotoyoshihisa thecontributionofchestxraytopredictextubationfailureinmechanicallyventilatedpatientsusingmachinelearningbasedalgorithms
AT ohbehiroyuki thecontributionofchestxraytopredictextubationfailureinmechanicallyventilatedpatientsusingmachinelearningbasedalgorithms
AT tamotomitsuhiro thecontributionofchestxraytopredictextubationfailureinmechanicallyventilatedpatientsusingmachinelearningbasedalgorithms
AT yamadanaoki thecontributionofchestxraytopredictextubationfailureinmechanicallyventilatedpatientsusingmachinelearningbasedalgorithms
AT yoshikawakeisuke thecontributionofchestxraytopredictextubationfailureinmechanicallyventilatedpatientsusingmachinelearningbasedalgorithms
AT gototadahiro thecontributionofchestxraytopredictextubationfailureinmechanicallyventilatedpatientsusingmachinelearningbasedalgorithms
AT fukuchikiyoyasu contributionofchestxraytopredictextubationfailureinmechanicallyventilatedpatientsusingmachinelearningbasedalgorithms
AT osawaitsuki contributionofchestxraytopredictextubationfailureinmechanicallyventilatedpatientsusingmachinelearningbasedalgorithms
AT satakeshunya contributionofchestxraytopredictextubationfailureinmechanicallyventilatedpatientsusingmachinelearningbasedalgorithms
AT itohonoka contributionofchestxraytopredictextubationfailureinmechanicallyventilatedpatientsusingmachinelearningbasedalgorithms
AT shibatajunichiro contributionofchestxraytopredictextubationfailureinmechanicallyventilatedpatientsusingmachinelearningbasedalgorithms
AT dohieisuke contributionofchestxraytopredictextubationfailureinmechanicallyventilatedpatientsusingmachinelearningbasedalgorithms
AT kasugaidaisuke contributionofchestxraytopredictextubationfailureinmechanicallyventilatedpatientsusingmachinelearningbasedalgorithms
AT miyamotoyoshihisa contributionofchestxraytopredictextubationfailureinmechanicallyventilatedpatientsusingmachinelearningbasedalgorithms
AT ohbehiroyuki contributionofchestxraytopredictextubationfailureinmechanicallyventilatedpatientsusingmachinelearningbasedalgorithms
AT tamotomitsuhiro contributionofchestxraytopredictextubationfailureinmechanicallyventilatedpatientsusingmachinelearningbasedalgorithms
AT yamadanaoki contributionofchestxraytopredictextubationfailureinmechanicallyventilatedpatientsusingmachinelearningbasedalgorithms
AT yoshikawakeisuke contributionofchestxraytopredictextubationfailureinmechanicallyventilatedpatientsusingmachinelearningbasedalgorithms
AT gototadahiro contributionofchestxraytopredictextubationfailureinmechanicallyventilatedpatientsusingmachinelearningbasedalgorithms