Cargando…

A predictive microfluidic model of human glioblastoma to assess trafficking of blood–brain barrier-penetrant nanoparticles

The blood–brain barrier represents a significant challenge for the treatment of high-grade gliomas, and our understanding of drug transport across this critical biointerface remains limited. To advance preclinical therapeutic development for gliomas, there is an urgent need for predictive in vitro m...

Descripción completa

Detalles Bibliográficos
Autores principales: Straehla, Joelle P., Hajal, Cynthia, Safford, Hannah C., Offeddu, Giovanni S., Boehnke, Natalie, Dacoba, Tamara G., Wyckoff, Jeffrey, Kamm, Roger D., Hammond, Paula T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9191661/
https://www.ncbi.nlm.nih.gov/pubmed/35648828
http://dx.doi.org/10.1073/pnas.2118697119
_version_ 1784726063140569088
author Straehla, Joelle P.
Hajal, Cynthia
Safford, Hannah C.
Offeddu, Giovanni S.
Boehnke, Natalie
Dacoba, Tamara G.
Wyckoff, Jeffrey
Kamm, Roger D.
Hammond, Paula T.
author_facet Straehla, Joelle P.
Hajal, Cynthia
Safford, Hannah C.
Offeddu, Giovanni S.
Boehnke, Natalie
Dacoba, Tamara G.
Wyckoff, Jeffrey
Kamm, Roger D.
Hammond, Paula T.
author_sort Straehla, Joelle P.
collection PubMed
description The blood–brain barrier represents a significant challenge for the treatment of high-grade gliomas, and our understanding of drug transport across this critical biointerface remains limited. To advance preclinical therapeutic development for gliomas, there is an urgent need for predictive in vitro models with realistic blood–brain-barrier vasculature. Here, we report a vascularized human glioblastoma multiforme (GBM) model in a microfluidic device that accurately recapitulates brain tumor vasculature with self-assembled endothelial cells, astrocytes, and pericytes to investigate the transport of targeted nanotherapeutics across the blood–brain barrier and into GBM cells. Using modular layer-by-layer assembly, we functionalized the surface of nanoparticles with GBM-targeting motifs to improve trafficking to tumors. We directly compared nanoparticle transport in our in vitro platform with transport across mouse brain capillaries using intravital imaging, validating the ability of the platform to model in vivo blood–brain-barrier transport. We investigated the therapeutic potential of functionalized nanoparticles by encapsulating cisplatin and showed improved efficacy of these GBM-targeted nanoparticles both in vitro and in an in vivo orthotopic xenograft model. Our vascularized GBM model represents a significant biomaterials advance, enabling in-depth investigation of brain tumor vasculature and accelerating the development of targeted nanotherapeutics.
format Online
Article
Text
id pubmed-9191661
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-91916612022-06-14 A predictive microfluidic model of human glioblastoma to assess trafficking of blood–brain barrier-penetrant nanoparticles Straehla, Joelle P. Hajal, Cynthia Safford, Hannah C. Offeddu, Giovanni S. Boehnke, Natalie Dacoba, Tamara G. Wyckoff, Jeffrey Kamm, Roger D. Hammond, Paula T. Proc Natl Acad Sci U S A Biological Sciences The blood–brain barrier represents a significant challenge for the treatment of high-grade gliomas, and our understanding of drug transport across this critical biointerface remains limited. To advance preclinical therapeutic development for gliomas, there is an urgent need for predictive in vitro models with realistic blood–brain-barrier vasculature. Here, we report a vascularized human glioblastoma multiforme (GBM) model in a microfluidic device that accurately recapitulates brain tumor vasculature with self-assembled endothelial cells, astrocytes, and pericytes to investigate the transport of targeted nanotherapeutics across the blood–brain barrier and into GBM cells. Using modular layer-by-layer assembly, we functionalized the surface of nanoparticles with GBM-targeting motifs to improve trafficking to tumors. We directly compared nanoparticle transport in our in vitro platform with transport across mouse brain capillaries using intravital imaging, validating the ability of the platform to model in vivo blood–brain-barrier transport. We investigated the therapeutic potential of functionalized nanoparticles by encapsulating cisplatin and showed improved efficacy of these GBM-targeted nanoparticles both in vitro and in an in vivo orthotopic xenograft model. Our vascularized GBM model represents a significant biomaterials advance, enabling in-depth investigation of brain tumor vasculature and accelerating the development of targeted nanotherapeutics. National Academy of Sciences 2022-06-01 2022-06-07 /pmc/articles/PMC9191661/ /pubmed/35648828 http://dx.doi.org/10.1073/pnas.2118697119 Text en Copyright © 2022 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) .
spellingShingle Biological Sciences
Straehla, Joelle P.
Hajal, Cynthia
Safford, Hannah C.
Offeddu, Giovanni S.
Boehnke, Natalie
Dacoba, Tamara G.
Wyckoff, Jeffrey
Kamm, Roger D.
Hammond, Paula T.
A predictive microfluidic model of human glioblastoma to assess trafficking of blood–brain barrier-penetrant nanoparticles
title A predictive microfluidic model of human glioblastoma to assess trafficking of blood–brain barrier-penetrant nanoparticles
title_full A predictive microfluidic model of human glioblastoma to assess trafficking of blood–brain barrier-penetrant nanoparticles
title_fullStr A predictive microfluidic model of human glioblastoma to assess trafficking of blood–brain barrier-penetrant nanoparticles
title_full_unstemmed A predictive microfluidic model of human glioblastoma to assess trafficking of blood–brain barrier-penetrant nanoparticles
title_short A predictive microfluidic model of human glioblastoma to assess trafficking of blood–brain barrier-penetrant nanoparticles
title_sort predictive microfluidic model of human glioblastoma to assess trafficking of blood–brain barrier-penetrant nanoparticles
topic Biological Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9191661/
https://www.ncbi.nlm.nih.gov/pubmed/35648828
http://dx.doi.org/10.1073/pnas.2118697119
work_keys_str_mv AT straehlajoellep apredictivemicrofluidicmodelofhumanglioblastomatoassesstraffickingofbloodbrainbarrierpenetrantnanoparticles
AT hajalcynthia apredictivemicrofluidicmodelofhumanglioblastomatoassesstraffickingofbloodbrainbarrierpenetrantnanoparticles
AT saffordhannahc apredictivemicrofluidicmodelofhumanglioblastomatoassesstraffickingofbloodbrainbarrierpenetrantnanoparticles
AT offeddugiovannis apredictivemicrofluidicmodelofhumanglioblastomatoassesstraffickingofbloodbrainbarrierpenetrantnanoparticles
AT boehnkenatalie apredictivemicrofluidicmodelofhumanglioblastomatoassesstraffickingofbloodbrainbarrierpenetrantnanoparticles
AT dacobatamarag apredictivemicrofluidicmodelofhumanglioblastomatoassesstraffickingofbloodbrainbarrierpenetrantnanoparticles
AT wyckoffjeffrey apredictivemicrofluidicmodelofhumanglioblastomatoassesstraffickingofbloodbrainbarrierpenetrantnanoparticles
AT kammrogerd apredictivemicrofluidicmodelofhumanglioblastomatoassesstraffickingofbloodbrainbarrierpenetrantnanoparticles
AT hammondpaulat apredictivemicrofluidicmodelofhumanglioblastomatoassesstraffickingofbloodbrainbarrierpenetrantnanoparticles
AT straehlajoellep predictivemicrofluidicmodelofhumanglioblastomatoassesstraffickingofbloodbrainbarrierpenetrantnanoparticles
AT hajalcynthia predictivemicrofluidicmodelofhumanglioblastomatoassesstraffickingofbloodbrainbarrierpenetrantnanoparticles
AT saffordhannahc predictivemicrofluidicmodelofhumanglioblastomatoassesstraffickingofbloodbrainbarrierpenetrantnanoparticles
AT offeddugiovannis predictivemicrofluidicmodelofhumanglioblastomatoassesstraffickingofbloodbrainbarrierpenetrantnanoparticles
AT boehnkenatalie predictivemicrofluidicmodelofhumanglioblastomatoassesstraffickingofbloodbrainbarrierpenetrantnanoparticles
AT dacobatamarag predictivemicrofluidicmodelofhumanglioblastomatoassesstraffickingofbloodbrainbarrierpenetrantnanoparticles
AT wyckoffjeffrey predictivemicrofluidicmodelofhumanglioblastomatoassesstraffickingofbloodbrainbarrierpenetrantnanoparticles
AT kammrogerd predictivemicrofluidicmodelofhumanglioblastomatoassesstraffickingofbloodbrainbarrierpenetrantnanoparticles
AT hammondpaulat predictivemicrofluidicmodelofhumanglioblastomatoassesstraffickingofbloodbrainbarrierpenetrantnanoparticles