Cargando…

Ultrafast two-photon fluorescence imaging of cerebral blood circulation in the mouse brain in vivo

Characterizing blood flow dynamics in vivo is critical to understanding the function of the vascular network under physiological and pathological conditions. Existing methods for hemodynamic imaging have insufficient spatial and temporal resolution to monitor blood flow at the cellular level in larg...

Descripción completa

Detalles Bibliográficos
Autores principales: Meng, Guanghan, Zhong, Jian, Zhang, Qinrong, Wong, Justin S. J., Wu, Jianglai, Tsia, Kevin K., Ji, Na
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9191662/
https://www.ncbi.nlm.nih.gov/pubmed/35648820
http://dx.doi.org/10.1073/pnas.2117346119
_version_ 1784726063386984448
author Meng, Guanghan
Zhong, Jian
Zhang, Qinrong
Wong, Justin S. J.
Wu, Jianglai
Tsia, Kevin K.
Ji, Na
author_facet Meng, Guanghan
Zhong, Jian
Zhang, Qinrong
Wong, Justin S. J.
Wu, Jianglai
Tsia, Kevin K.
Ji, Na
author_sort Meng, Guanghan
collection PubMed
description Characterizing blood flow dynamics in vivo is critical to understanding the function of the vascular network under physiological and pathological conditions. Existing methods for hemodynamic imaging have insufficient spatial and temporal resolution to monitor blood flow at the cellular level in large blood vessels. By using an ultrafast line-scanning module based on free-space angular chirped enhanced delay, we achieved two-photon fluorescence imaging of cortical blood flow at 1,000 two-dimensional (2D) frames and 1,000,000 one-dimensional line scans per second in the awake mouse. This orders-of-magnitude increase in temporal resolution allowed us to measure cerebral blood flow at up to 49 mm/s and observe pulsatile blood flow at harmonics of heart rate. Directly visualizing red blood cell (RBC) flow through vessels down to >800 µm in depth, we characterized cortical layer–dependent flow velocity distributions of capillaries, obtained radial velocity profiles and kilohertz 2D velocity mapping of multifile blood flow, and performed RBC flux measurements from penetrating blood vessels.
format Online
Article
Text
id pubmed-9191662
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-91916622022-06-14 Ultrafast two-photon fluorescence imaging of cerebral blood circulation in the mouse brain in vivo Meng, Guanghan Zhong, Jian Zhang, Qinrong Wong, Justin S. J. Wu, Jianglai Tsia, Kevin K. Ji, Na Proc Natl Acad Sci U S A Biological Sciences Characterizing blood flow dynamics in vivo is critical to understanding the function of the vascular network under physiological and pathological conditions. Existing methods for hemodynamic imaging have insufficient spatial and temporal resolution to monitor blood flow at the cellular level in large blood vessels. By using an ultrafast line-scanning module based on free-space angular chirped enhanced delay, we achieved two-photon fluorescence imaging of cortical blood flow at 1,000 two-dimensional (2D) frames and 1,000,000 one-dimensional line scans per second in the awake mouse. This orders-of-magnitude increase in temporal resolution allowed us to measure cerebral blood flow at up to 49 mm/s and observe pulsatile blood flow at harmonics of heart rate. Directly visualizing red blood cell (RBC) flow through vessels down to >800 µm in depth, we characterized cortical layer–dependent flow velocity distributions of capillaries, obtained radial velocity profiles and kilohertz 2D velocity mapping of multifile blood flow, and performed RBC flux measurements from penetrating blood vessels. National Academy of Sciences 2022-06-01 2022-06-07 /pmc/articles/PMC9191662/ /pubmed/35648820 http://dx.doi.org/10.1073/pnas.2117346119 Text en Copyright © 2022 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by/4.0/This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY) (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Biological Sciences
Meng, Guanghan
Zhong, Jian
Zhang, Qinrong
Wong, Justin S. J.
Wu, Jianglai
Tsia, Kevin K.
Ji, Na
Ultrafast two-photon fluorescence imaging of cerebral blood circulation in the mouse brain in vivo
title Ultrafast two-photon fluorescence imaging of cerebral blood circulation in the mouse brain in vivo
title_full Ultrafast two-photon fluorescence imaging of cerebral blood circulation in the mouse brain in vivo
title_fullStr Ultrafast two-photon fluorescence imaging of cerebral blood circulation in the mouse brain in vivo
title_full_unstemmed Ultrafast two-photon fluorescence imaging of cerebral blood circulation in the mouse brain in vivo
title_short Ultrafast two-photon fluorescence imaging of cerebral blood circulation in the mouse brain in vivo
title_sort ultrafast two-photon fluorescence imaging of cerebral blood circulation in the mouse brain in vivo
topic Biological Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9191662/
https://www.ncbi.nlm.nih.gov/pubmed/35648820
http://dx.doi.org/10.1073/pnas.2117346119
work_keys_str_mv AT mengguanghan ultrafasttwophotonfluorescenceimagingofcerebralbloodcirculationinthemousebraininvivo
AT zhongjian ultrafasttwophotonfluorescenceimagingofcerebralbloodcirculationinthemousebraininvivo
AT zhangqinrong ultrafasttwophotonfluorescenceimagingofcerebralbloodcirculationinthemousebraininvivo
AT wongjustinsj ultrafasttwophotonfluorescenceimagingofcerebralbloodcirculationinthemousebraininvivo
AT wujianglai ultrafasttwophotonfluorescenceimagingofcerebralbloodcirculationinthemousebraininvivo
AT tsiakevink ultrafasttwophotonfluorescenceimagingofcerebralbloodcirculationinthemousebraininvivo
AT jina ultrafasttwophotonfluorescenceimagingofcerebralbloodcirculationinthemousebraininvivo