Cargando…
Active transformations of topological structures in light-driven nematic disclination networks
Topological structures, such as topological defects, solitons, and vortices, are key to understanding the collective dynamics and spontaneous flows in active soft matter and are thereby important for their further applications. However, it is challenging to manipulate these topological structures in...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9191673/ https://www.ncbi.nlm.nih.gov/pubmed/35639695 http://dx.doi.org/10.1073/pnas.2122226119 |
_version_ | 1784726066253791232 |
---|---|
author | Jiang, Jinghua Ranabhat, Kamal Wang, Xinyu Rich, Hailey Zhang, Rui Peng, Chenhui |
author_facet | Jiang, Jinghua Ranabhat, Kamal Wang, Xinyu Rich, Hailey Zhang, Rui Peng, Chenhui |
author_sort | Jiang, Jinghua |
collection | PubMed |
description | Topological structures, such as topological defects, solitons, and vortices, are key to understanding the collective dynamics and spontaneous flows in active soft matter and are thereby important for their further applications. However, it is challenging to manipulate these topological structures in active matter due to their nonequilibrium nature. Here, we show that we can use light irradiation to trigger programmable transformations of topological structures in a predesigned disclination network. Specifically, we introduced topological patterns to a surface to frustrate the infiltrated nematic liquid crystal, giving rise to a three-dimensional disclination network with designated topological structures. These networks can be driven out of equilibrium by light irradiation and undergo a series of dynamic events, ending in different defect structures. The spatiotemporal evolutions of light-driven topological excitations in the form of disclination lines and loops are well characterized by continuum simulations. By dispersing nematic with amphiphilic molecules, we demonstrate a simultaneous transformation of disclination-guided, molecular self-assembly patterns. The demonstrated capability of commanding the topological transformation of defects using light opens opportunities for designing smart active materials. |
format | Online Article Text |
id | pubmed-9191673 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-91916732022-12-01 Active transformations of topological structures in light-driven nematic disclination networks Jiang, Jinghua Ranabhat, Kamal Wang, Xinyu Rich, Hailey Zhang, Rui Peng, Chenhui Proc Natl Acad Sci U S A Physical Sciences Topological structures, such as topological defects, solitons, and vortices, are key to understanding the collective dynamics and spontaneous flows in active soft matter and are thereby important for their further applications. However, it is challenging to manipulate these topological structures in active matter due to their nonequilibrium nature. Here, we show that we can use light irradiation to trigger programmable transformations of topological structures in a predesigned disclination network. Specifically, we introduced topological patterns to a surface to frustrate the infiltrated nematic liquid crystal, giving rise to a three-dimensional disclination network with designated topological structures. These networks can be driven out of equilibrium by light irradiation and undergo a series of dynamic events, ending in different defect structures. The spatiotemporal evolutions of light-driven topological excitations in the form of disclination lines and loops are well characterized by continuum simulations. By dispersing nematic with amphiphilic molecules, we demonstrate a simultaneous transformation of disclination-guided, molecular self-assembly patterns. The demonstrated capability of commanding the topological transformation of defects using light opens opportunities for designing smart active materials. National Academy of Sciences 2022-05-31 2022-06-07 /pmc/articles/PMC9191673/ /pubmed/35639695 http://dx.doi.org/10.1073/pnas.2122226119 Text en Copyright © 2022 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Physical Sciences Jiang, Jinghua Ranabhat, Kamal Wang, Xinyu Rich, Hailey Zhang, Rui Peng, Chenhui Active transformations of topological structures in light-driven nematic disclination networks |
title | Active transformations of topological structures in light-driven nematic disclination networks |
title_full | Active transformations of topological structures in light-driven nematic disclination networks |
title_fullStr | Active transformations of topological structures in light-driven nematic disclination networks |
title_full_unstemmed | Active transformations of topological structures in light-driven nematic disclination networks |
title_short | Active transformations of topological structures in light-driven nematic disclination networks |
title_sort | active transformations of topological structures in light-driven nematic disclination networks |
topic | Physical Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9191673/ https://www.ncbi.nlm.nih.gov/pubmed/35639695 http://dx.doi.org/10.1073/pnas.2122226119 |
work_keys_str_mv | AT jiangjinghua activetransformationsoftopologicalstructuresinlightdrivennematicdisclinationnetworks AT ranabhatkamal activetransformationsoftopologicalstructuresinlightdrivennematicdisclinationnetworks AT wangxinyu activetransformationsoftopologicalstructuresinlightdrivennematicdisclinationnetworks AT richhailey activetransformationsoftopologicalstructuresinlightdrivennematicdisclinationnetworks AT zhangrui activetransformationsoftopologicalstructuresinlightdrivennematicdisclinationnetworks AT pengchenhui activetransformationsoftopologicalstructuresinlightdrivennematicdisclinationnetworks |