Cargando…

A unified theory of free energy functionals and applications to diffusion

Free energy functionals of the Ginzburg–Landau type lie at the heart of a broad class of continuum dynamical models, such as the Cahn–Hilliard and Swift–Hohenberg equations. Despite the wide use of such models, the assumptions embodied in the free energy functionals frequently either are poorly just...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Andrew B., Miroshnik, Leonid, Rummel, Brian D., Balakrishnan, Ganesh, Han, Sang M., Sinno, Talid
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9191674/
https://www.ncbi.nlm.nih.gov/pubmed/35648830
http://dx.doi.org/10.1073/pnas.2203399119
_version_ 1784726066555781120
author Li, Andrew B.
Miroshnik, Leonid
Rummel, Brian D.
Balakrishnan, Ganesh
Han, Sang M.
Sinno, Talid
author_facet Li, Andrew B.
Miroshnik, Leonid
Rummel, Brian D.
Balakrishnan, Ganesh
Han, Sang M.
Sinno, Talid
author_sort Li, Andrew B.
collection PubMed
description Free energy functionals of the Ginzburg–Landau type lie at the heart of a broad class of continuum dynamical models, such as the Cahn–Hilliard and Swift–Hohenberg equations. Despite the wide use of such models, the assumptions embodied in the free energy functionals frequently either are poorly justified or lead to physically opaque parameters. Here, we introduce a mathematically rigorous pathway for constructing free energy functionals that generalizes beyond the constraints of Ginzburg–Landau gradient expansions. We show that the formalism unifies existing free energetic descriptions under a single umbrella by establishing the criteria under which the generalized free energy reduces to gradient-based representations. Consequently, we derive a precise physical interpretation of the gradient energy parameter in the Cahn–Hilliard model as the product of an interaction length scale and the free energy curvature. The practical impact of our approach is demonstrated using both a model free energy function and the silicon–germanium alloy system.
format Online
Article
Text
id pubmed-9191674
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-91916742022-12-01 A unified theory of free energy functionals and applications to diffusion Li, Andrew B. Miroshnik, Leonid Rummel, Brian D. Balakrishnan, Ganesh Han, Sang M. Sinno, Talid Proc Natl Acad Sci U S A Physical Sciences Free energy functionals of the Ginzburg–Landau type lie at the heart of a broad class of continuum dynamical models, such as the Cahn–Hilliard and Swift–Hohenberg equations. Despite the wide use of such models, the assumptions embodied in the free energy functionals frequently either are poorly justified or lead to physically opaque parameters. Here, we introduce a mathematically rigorous pathway for constructing free energy functionals that generalizes beyond the constraints of Ginzburg–Landau gradient expansions. We show that the formalism unifies existing free energetic descriptions under a single umbrella by establishing the criteria under which the generalized free energy reduces to gradient-based representations. Consequently, we derive a precise physical interpretation of the gradient energy parameter in the Cahn–Hilliard model as the product of an interaction length scale and the free energy curvature. The practical impact of our approach is demonstrated using both a model free energy function and the silicon–germanium alloy system. National Academy of Sciences 2022-06-01 2022-06-07 /pmc/articles/PMC9191674/ /pubmed/35648830 http://dx.doi.org/10.1073/pnas.2203399119 Text en Copyright © 2022 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) .
spellingShingle Physical Sciences
Li, Andrew B.
Miroshnik, Leonid
Rummel, Brian D.
Balakrishnan, Ganesh
Han, Sang M.
Sinno, Talid
A unified theory of free energy functionals and applications to diffusion
title A unified theory of free energy functionals and applications to diffusion
title_full A unified theory of free energy functionals and applications to diffusion
title_fullStr A unified theory of free energy functionals and applications to diffusion
title_full_unstemmed A unified theory of free energy functionals and applications to diffusion
title_short A unified theory of free energy functionals and applications to diffusion
title_sort unified theory of free energy functionals and applications to diffusion
topic Physical Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9191674/
https://www.ncbi.nlm.nih.gov/pubmed/35648830
http://dx.doi.org/10.1073/pnas.2203399119
work_keys_str_mv AT liandrewb aunifiedtheoryoffreeenergyfunctionalsandapplicationstodiffusion
AT miroshnikleonid aunifiedtheoryoffreeenergyfunctionalsandapplicationstodiffusion
AT rummelbriand aunifiedtheoryoffreeenergyfunctionalsandapplicationstodiffusion
AT balakrishnanganesh aunifiedtheoryoffreeenergyfunctionalsandapplicationstodiffusion
AT hansangm aunifiedtheoryoffreeenergyfunctionalsandapplicationstodiffusion
AT sinnotalid aunifiedtheoryoffreeenergyfunctionalsandapplicationstodiffusion
AT liandrewb unifiedtheoryoffreeenergyfunctionalsandapplicationstodiffusion
AT miroshnikleonid unifiedtheoryoffreeenergyfunctionalsandapplicationstodiffusion
AT rummelbriand unifiedtheoryoffreeenergyfunctionalsandapplicationstodiffusion
AT balakrishnanganesh unifiedtheoryoffreeenergyfunctionalsandapplicationstodiffusion
AT hansangm unifiedtheoryoffreeenergyfunctionalsandapplicationstodiffusion
AT sinnotalid unifiedtheoryoffreeenergyfunctionalsandapplicationstodiffusion