Cargando…
Multiple Sclerosis Lesions Segmentation Using Attention-Based CNNs in FLAIR Images
Objective: Multiple Sclerosis (MS) is an autoimmune and demyelinating disease that leads to lesions in the central nervous system. This disease can be tracked and diagnosed using Magnetic Resonance Imaging (MRI). A multitude of multimodality automatic biomedical approaches are used to segment lesion...
Formato: | Online Artículo Texto |
---|---|
Lenguaje: | English |
Publicado: |
IEEE
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9191687/ https://www.ncbi.nlm.nih.gov/pubmed/35711337 http://dx.doi.org/10.1109/JTEHM.2022.3172025 |
Ejemplares similares
-
MRI FLAIR lesion segmentation in multiple sclerosis: Does automated segmentation hold up with manual annotation?
por: Egger, Christine, et al.
Publicado: (2016) -
Automated segmentation of changes in FLAIR-hyperintense white matter lesions in multiple sclerosis on serial magnetic resonance imaging
por: Schmidt, Paul, et al.
Publicado: (2019) -
Image-Based Pain Intensity Estimation Using Parallel CNNs with Regional Attention
por: Ye, Xinting, et al.
Publicado: (2022) -
FLAIR(2) improves LesionTOADS automatic segmentation of multiple sclerosis lesions in non-homogenized, multi-center, 2D clinical magnetic resonance images
por: Le, M., et al.
Publicado: (2019) -
Multiple sclerosis cortical and WM lesion segmentation at 3T MRI: a deep learning method based on FLAIR and MP2RAGE
por: La Rosa, Francesco, et al.
Publicado: (2020)