Cargando…

An experimental study of tuned liquid column damper controlled multi-degree of freedom structure subject to harmonic and seismic excitations

A tuned liquid column damper (TLCD) is a passive vibration control device that not only mitigates unwanted structural vibrations but also acts as a water storage facility in a building. These aspects of TLCD make its application specifically suited for building structures. Previously, many experimen...

Descripción completa

Detalles Bibliográficos
Autores principales: Shah, Mati Ullah, Usman, Muhammad
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9191723/
https://www.ncbi.nlm.nih.gov/pubmed/35696409
http://dx.doi.org/10.1371/journal.pone.0269910
Descripción
Sumario:A tuned liquid column damper (TLCD) is a passive vibration control device that not only mitigates unwanted structural vibrations but also acts as a water storage facility in a building. These aspects of TLCD make its application specifically suited for building structures. Previously, many experimental works on TLCDs have been conducted considering a single degree of freedom (SDOF) structure. However, the performance of TLCDs to control the response of multi-degree of freedom (MDOF) structure has rarely been studied experimentally. Therefore, this study has investigated the performance of a tuned liquid column damper (TLCD) on a multi-degree of freedom (MDOF) structure using shake table testing. A four-storey steel frame structure equipped with TLCD at the top of the fourth storey has been studied. Experimental normalized frequency response curves for MDOF structure equipped with TLCD have been determined. For this purpose, a series of harmonic loadings including frequencies 0.65 Hz, 1.17 Hz, 1.30 Hz, 1.43 Hz and 1.95 Hz have been applied in addition to historic earthquake loading. Peak and root-mean-square (RMS) accelerations have been discussed in detail for all the applied loadings at each storey level of the structure. For comparison purposes, the percentage reductions in peak and RMS accelerations have been calculated and compared. Also, RMS displacements and inter-storey drifts have been presented for resonant and seismic excitations. Both in time and frequency domains, responses of controlled MDOF structure have been analyzed and compared with uncontrolled structure. Results confirmed that TLCD has improved the MDOF structure responses at harmonic loadings frequencies near resonance and historic earthquake excitations. Furthermore, the improvement in the responses of MDOF structure with TLCD is more prominent at harmonic loadings compared to historic earthquake loading.