Cargando…
Phase Prediction Study of High-Entropy Energy Alloy Generation Based on Machine Learning
Traditional energy sources such as fossil fuels can cause environmental pollution on the one hand, and on the other hand, there will be a shortage of diminishing stocks. Recently, a variety of new energy sources have been proposed by scientists, such as nuclear energy, hydrogen energy, wind energy,...
Autores principales: | He, Zhongping, Zhang, Huan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9192227/ https://www.ncbi.nlm.nih.gov/pubmed/35707197 http://dx.doi.org/10.1155/2022/8904341 |
Ejemplares similares
-
Retracted: Phase Prediction Study of High-Entropy Energy Alloy Generation Based on Machine Learning
por: Neuroscience, Computational Intelligence and
Publicado: (2022) -
Machine learning-based prediction of phases in high-entropy alloys: A data article
por: Machaka, Ronald, et al.
Publicado: (2021) -
Phase Prediction of High-Entropy Alloys by Integrating Criterion and Machine Learning Recommendation Method
por: Hou, Shuai, et al.
Publicado: (2022) -
Phase prediction and experimental realisation of a new high entropy alloy using machine learning
por: Singh, Swati, et al.
Publicado: (2023) -
A machine learning framework for discovering high entropy alloys phase formation drivers
por: Syarif, Junaidi, et al.
Publicado: (2023)