Cargando…
Rethinking U-Net from an Attention Perspective with Transformers for Osteosarcoma MRI Image Segmentation
Osteosarcoma is one of the most common primary malignancies of bone in the pediatric and adolescent populations. The morphology and size of osteosarcoma MRI images often show great variability and randomness with different patients. In developing countries, with large populations and lack of medical...
Autores principales: | Ouyang, Tianxiang, Yang, Shun, Gou, Fangfang, Dai, Zhehao, Wu, Jia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9192230/ https://www.ncbi.nlm.nih.gov/pubmed/35707196 http://dx.doi.org/10.1155/2022/7973404 |
Ejemplares similares
-
Auxiliary Segmentation Method of Osteosarcoma MRI Image Based on Transformer and U-Net
por: Liu, Feng, et al.
Publicado: (2022) -
BA-GCA Net: Boundary-Aware Grid Contextual Attention Net in Osteosarcoma MRI Image Segmentation
por: Wu, Jia, et al.
Publicado: (2022) -
Intelligent Segmentation Medical Assistance System for MRI Images of Osteosarcoma in Developing Countries
por: Wu, Jia, et al.
Publicado: (2022) -
Attention-augmented U-Net (AA-U-Net) for semantic segmentation
por: Rajamani, Kumar T., et al.
Publicado: (2022) -
DARU‐Net: A dual attention residual U‐Net for uterine fibroids segmentation on MRI
por: Zhang, Jian, et al.
Publicado: (2023)